1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
3 years ago
11

The first 5 terms of a number pattern are shown below.

Mathematics
1 answer:
kotykmax [81]3 years ago
4 0

\bf 4~~,~~\stackrel{4+5}{9}~~,~~\stackrel{9+5}{14}~~,~~\stackrel{14+5}{19}~~,~~\stackrel{19+5}{24}\qquad \impliedby \stackrel{\textit{common difference}}{d=5} \\\\[-0.35em] ~\dotfill\\\\ n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} a_n=n^{th}\ term\\ n=\textit{term position}\\ a_1=\textit{first term}\\ d=\textit{common difference}\\ \cline{1-1} a_1=4\\ d=5 \end{cases} \\\\\\ a_n=4+(n-1)5\implies a_n=4+5n-5\implies a_n=5n-1

You might be interested in
What is triangle angle sum theorem
liubo4ka [24]

The triangle angle sum theorem states that the 3 angles within the triangle must have a sum that equals 180 degrees.

3 0
3 years ago
1
Marianna [84]

Answer:

  B. {16, 19, 20}

Step-by-step explanation:

The <em>triangle inequality</em> requires for any sides a, b, c you must have ...

  a + b > c

  b + c > a

  c + a > b

The net result of those requirements are ...

  • the sum of the two shortest sides must be greater than the longest side
  • the length of the third side lies between the difference and sum of the other two sides

__

If we look at the offered side length choices, we see ...

  A: 8+11 = 19 . . . not > 19; not a triangle

  B: 16+19 = 35 > 20; could be a triangle

  C: 3+4 = 7 . . . not > 8; not a triangle

  D: 5+5 = 10 . . . not > 11; not a triangle

The side lengths {16, 19, 20} could represent the sides of a triangle.

_____

<em>Additional comment</em>

The version of triangle inequality shown above ensures that a triangle will have non-zero area.

The alternative version of the triangle inequality uses ≥ instead of >. Triangles where a+b=c will look like a line segment--they will have zero area. Many authors disallow this case. (If it were allowed, then {8, 11, 19} would also be a "triangle.")

4 0
2 years ago
Graph the equation (x - 3)2 + (y + 4)2 = 144
Anna007 [38]
It will be a circle with a center of (3, -4) and a radius of 12.
5 0
3 years ago
Read 2 more answers
Deposits into a bank account are represented by positive numbers. Withdrawals from the
Paul [167]

\red{answer}

$-150

3 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • Karleigh walks 5/8 mile to school every day . How far does she walk to school in 5 days
    5·1 answer
  • Suppose the point (a, b) lies in the first quadrant. Describe how you would move
    12·1 answer
  • Granny had 25 bananas.
    10·2 answers
  • Name an inscribed angle that intercepts arc AB.
    15·1 answer
  • I need helpppppppppppppppppppppppppppppp
    9·1 answer
  • Given angle 1 is congruent to angle 2 and angle 3 is congruent to angle 4 prove p is parallel to r
    6·1 answer
  • A scale drawing of Jack's living room is shown below:
    15·1 answer
  • I need help will mark brainliest​
    9·1 answer
  • X/3 - 13= 9 <br> Plz help its very confusing
    9·2 answers
  • Solve for c.<br> a(c+b) = d
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!