1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
5

The third-degree Taylor polynomial about x = 0 of In(1 - x) is

Mathematics
1 answer:
gizmo_the_mogwai [7]3 years ago
5 0

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

You might be interested in
Enter the value that makes the given equation true. Y+396.23 =574.54
Levart [38]
574.54-396.23= 178.31
So Y=178.31
8 0
3 years ago
6. For a particular pickup truck, the percent markup is known to be 115% based on cost to the seller. If the seller paid $15,800
Neko [114]

Answer:

  • <u>53.5 %</u>

Explanation:

You can convert the percent markup into a multiplicative factor in this way:

Base price:                     15,800 . . . (cost to the seller)

Percent mark up:           115% . . .  (based on the cost to the seller)

Sale price:                      15,800 + 115% of x = 15,800 + 115 × 15,800 /100 =

                                        = 15,800 + 1.15 × 15,800 = 15,800 (2.15) = 33,970

The markup is:

  • Markup = price paid by the seller - cost to the seller = 33,970 - 15,800   = 18,170 (notice that this is 115% of 15,800)

And <em>the percent markup based on the sale price is</em>:

  • % = (markup / sale price) × 100 = (18,700 / 33,970) × 100 =

            = 53.49 %

Rounding to the nearest tenth percent that is 53.5 %.

4 0
4 years ago
Which statistic is a measure of how data are dispersed in a population and can be used to give context to larger data sets
OLEGan [10]

Answer:

standard deviation

Step-by-step explanation:

The standard deviation is defined as the measure of how spread out the numbers are in a given population. In other words, statistics refers to the amount of the dispersion or variation of a set of given values.

It is denoted by the Greek letter sigma, σ.

Thus the standard deviation is the measure of how dispersed the data are in the population which can be used to provide context to a larger data sets.

7 0
3 years ago
One hundred nautical miles equals about 185 kilometers. To the nearest kilometer, how far in kilometers is 175 nautical miles?
MrMuchimi

Answer:

323.75 km

Step-by-step explanation:

185/100 = 1.85 km per nm

1.85 * 175 = 323.75 km

3 0
3 years ago
What number cube has faces numbered 1 to 6.
mars1129 [50]

Answer:

I don`t see the attachment

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Isabella has dance class every 3 days and soccer
    13·1 answer
  • Can someone help me with the answers 7- 14 pleaseeee and thank you!
    10·1 answer
  • Un submarino puede descender a una velocidad de –2,5 metros / segundo. Supongamos que el submarino comienza a una profundidad de
    6·1 answer
  • R = 20 : ((3/7) x 10)
    8·1 answer
  • Can someone please help?<br><br> Write the equation of the inequality.
    14·1 answer
  • 18 cm distance on map<br> 120 m distance in real life <br> Scale
    7·1 answer
  • Whats constant of proportanility
    13·1 answer
  • The square pool was turned into a rectangular one and it's area was enlarged by a factor of 5 by enlarging one side of the pool
    5·1 answer
  • 60 points! Please help me fast this is due soon. I will mark brainliest. Random answers will be reported.
    6·2 answers
  • What is the reciprocal of 5 sixths?<br><br> pls help need it ASAP
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!