1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
5

The third-degree Taylor polynomial about x = 0 of In(1 - x) is

Mathematics
1 answer:
gizmo_the_mogwai [7]3 years ago
5 0

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

You might be interested in
What is the product of 3(7x + 5)
omeli [17]

Answer: 28x+15

Step-by-step explanation:

5 0
2 years ago
Please help me and thank you if you did help me
Luba_88 [7]
12 to 16 because all ratios are equivalent
7 0
3 years ago
Read 2 more answers
The Venn diagram shows the results of two events resulting from rolling a number cube.
gulaghasi [49]

Answer:   P(A\cap B)=\frac{1}{3}

P(A)=\frac{1}{3}

P(B)=1

P(A|B)=\frac{1}{3}

Step-by-step explanation:

From the given figure it can be seen that

Total number on cube= n(S)=6

Intersection of A and B = n(A ∩ B)= 2

Therefore,

P(A\cap B)=\frac{n(A\cap B)}{n(s)}=\frac{2}{6}=\frac{1}{3}

Also, The number of elements in A = 2

Therefore,

P(A)=\frac{n(A)}{n(s)}=\frac{2}{6}=\frac{1}{3}

Similarly, The number of elements in B= 6

Therefore,

P(B)=\frac{n(B)}{n(s)}=\frac{6}{6}=1

The formula to find the conditional probability is given by :-

P(A|B)=\frac{P(A\cap B)}{P(B)}\\\\\Rightarrow P(A|B)=\frac{\frac{1}{3}}{1}=\frac{1}{3}

4 0
3 years ago
Read 2 more answers
8 grams = milligrams
Digiron [165]

Answer:

8,000 miligrams

Step-by-step explanation:

There's 1000 milligrams in a gram so you would have to do multiplication.

which if you do..

8x1000

you should get...

8000 milligrams

4 0
3 years ago
Read 2 more answers
Cedric and Josh both ordered the same size pizzas at Marco’s Pizzeria; however, they ordered different toppings. Marco’s charges
Oksanka [162]
Let
C---------> <span>the cost of a pizza
</span>t----------> <span>number of toppings

we know that
</span>$15.74-3t=$14.49-2t
15.74-14.49=3t-2t-------------> t=1.25

the cost of one topping is $1.25
and the cost of one pizza <span>without topping is
</span>15.74-3*1.25--------> $11.99

then
<span>an equation for the cost of a pizza, C, as a function of the number of toppings, t ordered is
</span>C=11.99+1.25t

the answer is 
C=11.99+1.25t
6 0
2 years ago
Read 2 more answers
Other questions:
  • Find the equation of the line specified.<br> The slope is 6, and it passes through ( -4, 4).
    12·1 answer
  • Two poles, AB and ED, are fixed to the ground with the help of ropes AC and EC, as shown:
    9·1 answer
  • Someone help pleaaaaseeeeee
    7·1 answer
  • Which of the following can be a solution to the inequality below?<br> 2x &gt; 6.<br> Pls send help
    5·1 answer
  • Use deductive reasoning to solve the equatlon 2-3x = -4. The solution Is x =​
    10·1 answer
  • Of 30 students, 1/3 play sports. Of those who play sports, 2/5 play soccer.
    12·1 answer
  • Charlie made hamburgers
    12·1 answer
  • Solve square root equation. <br><br> b^2=-169
    14·2 answers
  • Help please...shape a1+(n-1)d in graph form
    11·2 answers
  • Help! Help! HELP!!<br> Find the value for x
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!