1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
5

The third-degree Taylor polynomial about x = 0 of In(1 - x) is

Mathematics
1 answer:
gizmo_the_mogwai [7]3 years ago
5 0

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

You might be interested in
HELP AGAIN!!! Plzzzzz thank you!!!
never [62]
Absolute value of -1/3 is 1/3
6 0
3 years ago
Susan threw a softball 42 years on her first try and 51 1/3 yard on her second try. How much farther did she throw the softball
Andru [333]

Answer:

28 feet farther than 1st ball.

Step-by-step explanation:

We have been given that Susan threw a softball 42 yards on her first try and 51\frac{1}{3} yard on her second try.

To find second ball is how much farther from the 1st ball, we will subtract 42 yards from 51\frac{1}{3} yards.

\text{The second ball is farther from 1st ball}=51\frac{1}{3}\text{ yards}-42\text{ yards}

\text{The second ball is farther from 1st ball}=\frac{154}{3}\text{ yards}-42\text{ yards}

Let us have a common denominator.

\text{The second ball is farther from 1st ball}=\frac{154}{3}\text{ yards}-\frac{42*3}{3}\text{ yards}  

\text{The second ball is farther from 1st ball}=\frac{154}{3}\text{ yards}-\frac{126}{3}\text{ yards}

\text{The second ball is farther from 1st ball}=\frac{154-126}{3}\text{ yards}

\text{The second ball is farther from 1st ball}=\frac{28}{3}\text{ yards}

\text{1 yard}=3\text{ feet}

\frac{28}{3}\text{ yards}=\frac{28}{3}\times 3\text{ feet}

\frac{28}{3}\text{ yards}=28\text{ feet}

Therefore, Susan thrown the second ball 28 feet farther from the 1st ball.

7 0
3 years ago
Which set of statements explain how to plot a point at the location​
fredd [130]

Answer:

A

Step-by-step explanation:

7 0
3 years ago
What is ausrdi unscrambled
oee [108]
Ausrdi scrambled is radius
5 0
3 years ago
Which table shows exponential decay? A 2-column table has 4 rows. The first column is labeled x with entries 1, 2, 3, 4. The sec
zvonat [6]

Answer:

The first table; <em>the first column is labeled x with entries 1, 2, 3, 4. The second column is labeled y with entries 16, 8, 4, 2.</em>

Step-by-step explanation:

Exponential decay means that the graph or table is exponentially decreasing. Meaning, if you went from point 4 to 1, you would see an exponential increase. Other tables show other forms of functions, such as quadratic, or linear. To find out which rate it is decaying by, ask yourself, at 0, what is the y output? You can then divide the output of 0 by 1, and so on. If it is decaying at a consistent rate, then you know it is exponential. If you do not need to divide, but know it is decaying at a rate of two, it is linear. If it does not divide the first time smoothly, it is quadratic. It could also be a number of things.

I hope this helps you. We studied this quite a while ago, and I do not remember the equation at the tip of my tongue, and I do not want to give you wrong information. Have a great rest of your day!

4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the range of these two functions? <br> M(x)=|x+2|-1<br> T(x)=|2x+2|-1
    12·1 answer
  • What is the answer please
    9·2 answers
  • Matt and Anna Killian are frequent fliers on​ Fast-n-Go Airlines. They often fly between two cities that are a distance of 1980
    14·1 answer
  • The ratio of students wearing sneakers to those wearing boots is 5 to 6. If there are 33 students in the class, and all of them
    11·1 answer
  • What is 9/10 divided by 3/12
    9·1 answer
  • What is the solution of the system of linear equations below?
    12·2 answers
  • A scalene triangle has two sides that are equal in length.
    13·1 answer
  • 9th grade math please help
    6·1 answer
  • A government official is in charge of allocating social programs throughout the city of Vancouver. He will decide where these so
    10·1 answer
  • An angle whose measure is -302° is in standard position. In which quadrant does the terminal side of the angle fall?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!