1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
3 years ago
5

The third-degree Taylor polynomial about x = 0 of In(1 - x) is

Mathematics
1 answer:
gizmo_the_mogwai [7]3 years ago
5 0

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

You might be interested in
Two less than 2 times a number is the same as the number plus 64. What is the number?
Alex Ar [27]
Set it up as an equation. "A number" is x.

2x-2=x+64

Move all of the x terms to one side by subtracting x from both sides, then add 2 to both sides to isolate x.

X=66

The number is 66
8 0
3 years ago
A 4-column table with 3 rows. Column 1 has entries run, do not run, total. Column 2 is labeled lift weights with entries 40, bla
alexandr1967 [171]

Answer:

A Totals row in Access helps you see, at a quick glance, what the totals are for columns on a datasheet. For example, in a table of purchase information, we can show the sum of the price, or units purchased, or a total count of the items by adding a Totals row to the datasheet:

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Jakes map shows the distance from the bake stars cafe to the restaurant supply store as 3 centimeters. If the scale of the map i
Lapatulllka [165]

The real distance fro the shop to the store is 24 km

<em><u>Solution:</u></em>

Given that, Jakes map shows the distance from the bake stars cafe to the restaurant supply store as 3 centimeter

Scale of the map is 1 centimeter to 8 kilometers

Therefore, scale is:

1\ centimeter : 8\ kilometer

Let "x" be the real distance from the shop to the store

Then by proportion, we get,

\frac{1\ centimeter}{8\ kilometer} = \frac{3\ centimeter}{x\ kilometer}\\\\\frac{1}{8} = \frac{3}{x}\\\\x = 3 \times 8\\\\x = 24

Thus real distance fro the shop to the store is 24 km

3 0
3 years ago
How many nickels are there in seventeen dollars?
Hunter-Best [27]
20 nickels = 1 dollar

So, do 20 x 17.

20 x 17 = 340 nickels which is $17.

The answer is 340 nickels!
4 0
3 years ago
Victor opened a savings account that earns 4.5% simple interest. He deposited $5, 725 into the account. What will his BALANCE be
mote1985 [20]
I’m not sure sorrry but i hope someone else can help u
8 0
3 years ago
Other questions:
  • What is 41/12 as a mixed number
    13·2 answers
  • A cell phone company charges a monthly fee plus $0.25 for each text message. The monthly fee is $30.00 and you owe $59.50. Write
    12·1 answer
  • I need help on this question plz
    10·1 answer
  • What is a radius of this circle D=10
    5·1 answer
  • What is the square route of sixteen
    6·2 answers
  • Which is a true statement? 7/4 is a rational number but not a whole number. 7/4 is a whole number but not a rational number. 7/4
    13·1 answer
  • PLEASE HELP I'M BEING TIMES!! (UNIT RATE!!!!!)
    6·2 answers
  • If the sum of 37 and 12 x is 286, what is the value of x?
    13·1 answer
  • The Grade 8 Students had an end of the year dance. The DJ (disc jockey) they hired charged a flat rate (it is only charged once)
    7·1 answer
  • Grade 12<br>mathematics<br>(√98-√50)² ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!