Answer:
Perimeter of ABCD = 21.58 units
Step-by-step explanation:
Distance formula:-
Le (x₁,y₁) and (x₂,y₂) be the two end points of a line segments.Then length of segment = √[(x₂ - x₁)² + (y₂ - y₁)²]
It is given that,
ABCD is a quadrilateral A(-3,2) B(4,2) C(3,-3) D(-3,3)
<u>To find the side length of quadrilateral </u>
A(-3,2) , B(4,2), C(3,-3) and D(-3,3)
AB = √[(4 --3)² + (2 - 2)²] = √[(4 +3)² + 0] = 7
B(4,2) C(3,-3)
BC = √[(3 - 4)² + (-3 - 2)²] = √26 = 5.1
CD = √[(-3 - 3)² + (3 - -3)²] =√72 = 8.48
AD = √[(-3 - -3)² + (3 - 2)²] =1
<u>To find perimeter of ABCD</u>
Perimeter = AB + BC + CD + AD = 7 + 5.1 + 8.48 + 1= 21.58