Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
Answer:
jose
Step-by-step explanation:
2.00 ÷ 20 = 10 c
1.50 ÷ 10 = 15 c
x=3 and x= -2
Step-by-step explanation:
we could simplify it to x*2 + x -6 = 0
then 2 numbers whose sum is 1 and product is -6
the numbers are 3 and -2
Answer:Length and angle measure
Step-by-step explanation:
The length measure is the distance along the curve (arc) and the angle measure is the angle that the arc makes with the center of the circle.
Yes because they both started right next to each other. If the ant moves in the same direction, in a straight line.