Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
If it increased its speed steadily at a constant rate, then the average speed for the minute was
(1/2)(10m/s + 20m/s) = 15 m/s .
Rolling at an average speed of 15 m/s for 1 minute (60 seconds), it travels
(15 m/s) (60 sec) = 900 meters
Answer:
conductor,neither,insulator
Explanation:
conductors allow electricity to flow through while insulators do not
HOPE IT HELPS
a) 0.26 h
b) 71.4 km
Explanation:
a)
In order to solve the problem, we have to know what is the final velocity of the car.
Here, we assume that the final velocity reached by the car is

Therefore, we can find the time taken by the car to reach this velocity by using the suvat equation:

where:
u = 250 km/h is the initial velocity
is the acceleration of the car
v = 300 km/h is the final velocity
t is the time
Solving for t, we find:

b)
In order to find the distance covered by the car, we can use the following suvat equation:

where:
s is the distance covered
u is the initial velocity
a is the acceleration
t is the time
For the car in this problem, we have:
u = 250 km/h
t = 0.26 h (calculated in part a)

Therefore, the distance covered is
