We have that
<span>log10 E = 4.4 + 1.5<span>M
</span></span>E=<span>the released energy in Joules (J)
M= </span><span>earthquake measures---------- > 3.6
</span>log10 E = 4.4 + 1.5*3.6
log10 E = 9.8----------> E=10^(9.8)= 6.309573444 x10^9 J
<span>
the answer is </span>6.309573444 x10^9 J<span>
</span>
Answer: The correct option is (c) ![\dfrac{49}{100}.](https://tex.z-dn.net/?f=%5Cdfrac%7B49%7D%7B100%7D.)
Step-by-step explanation: We are given to solve the following quadratic equation by the method of completing the square:
![5x^2-7x+2=0~~~~~~~~~~~~~~~~~~~(i)](https://tex.z-dn.net/?f=5x%5E2-7x%2B2%3D0~~~~~~~~~~~~~~~~~~~%28i%29)
Also, we are to find the constant added on both sides to form the perfect square trinomial.
We have from equation (i) that
![5x^2-7x+2=0\\\\\Rightarrow x^2-\dfrac{7}{5}x+\dfrac{2}{5}=0\\\\\\\Rightarrow x^2-2\times x\times \dfrac{7}{10}+\left(\dfrac{7}{10}\right)^2+\dfrac{2}{5}=\left(\dfrac{7}{10}\right)^2\\\\\\\Rightarrow \left(x-\dfrac{7}{10}\right)^2=\dfrac{49}{100}-\dfrac{2}{5}\\\\\\\Rightarrow \left(x-\dfrac{7}{10}\right)^2=\dfrac{49-40}{100}\\\\\\\Rightarrow \left(x-\dfrac{7}{10}\right)^2=\dfrac{9}{100}\\\\\\\Rightarrow x-\dfrac{7}{10}=\pm\dfrac{3}{10}\\\\\\\Rightarrow x=\pm\dfrac{3}{10}+\dfrac{7}{10}.](https://tex.z-dn.net/?f=5x%5E2-7x%2B2%3D0%5C%5C%5C%5C%5CRightarrow%20x%5E2-%5Cdfrac%7B7%7D%7B5%7Dx%2B%5Cdfrac%7B2%7D%7B5%7D%3D0%5C%5C%5C%5C%5C%5C%5CRightarrow%20x%5E2-2%5Ctimes%20x%5Ctimes%20%5Cdfrac%7B7%7D%7B10%7D%2B%5Cleft%28%5Cdfrac%7B7%7D%7B10%7D%5Cright%29%5E2%2B%5Cdfrac%7B2%7D%7B5%7D%3D%5Cleft%28%5Cdfrac%7B7%7D%7B10%7D%5Cright%29%5E2%5C%5C%5C%5C%5C%5C%5CRightarrow%20%5Cleft%28x-%5Cdfrac%7B7%7D%7B10%7D%5Cright%29%5E2%3D%5Cdfrac%7B49%7D%7B100%7D-%5Cdfrac%7B2%7D%7B5%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20%20%5Cleft%28x-%5Cdfrac%7B7%7D%7B10%7D%5Cright%29%5E2%3D%5Cdfrac%7B49-40%7D%7B100%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20%20%5Cleft%28x-%5Cdfrac%7B7%7D%7B10%7D%5Cright%29%5E2%3D%5Cdfrac%7B9%7D%7B100%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20x-%5Cdfrac%7B7%7D%7B10%7D%3D%5Cpm%5Cdfrac%7B3%7D%7B10%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20x%3D%5Cpm%5Cdfrac%7B3%7D%7B10%7D%2B%5Cdfrac%7B7%7D%7B10%7D.)
So,
![x=\dfrac{3}{10}+\dfrac{7}{10},~~~~~~~~x=-\dfrac{3}{10}+\dfrac{7}{10}\\\\\\\Rightarrow x=\dfrac{10}{10},~~~~~~~~\Rightarrow x=\dfrac{-3+7}{10}\\\\\\\Rightarrow x=1,~-\dfrac{2}{5}.](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B3%7D%7B10%7D%2B%5Cdfrac%7B7%7D%7B10%7D%2C~~~~~~~~x%3D-%5Cdfrac%7B3%7D%7B10%7D%2B%5Cdfrac%7B7%7D%7B10%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B10%7D%7B10%7D%2C~~~~~~~~%5CRightarrow%20x%3D%5Cdfrac%7B-3%2B7%7D%7B10%7D%5C%5C%5C%5C%5C%5C%5CRightarrow%20x%3D1%2C~-%5Cdfrac%7B2%7D%7B5%7D.)
Thus, the required solution is
and the value of the constant added is ![\dfrac{49}{100}.](https://tex.z-dn.net/?f=%5Cdfrac%7B49%7D%7B100%7D.)
Option (c) is correct.
Answer:
x = 8, y = 2
Step-by-step explanation:
Multiply the second equation by -2:
x + 6y = 20
-2x - 6y = -28
Add the equations and simplify:
-x = -8
x = 8
Plug x = 8 back into the first equation and solve for y:
8 + 6y = 20
6y = 12
y = 2
-1 is greater then 1.05 then 1.05 then 1.55
so the answer is C