Answer:
36.4 atm
Explanation:
To find the pressure, you need to use the Ideal Gas Law. The equation looks like this:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = constant (0.0821 L*atm/mol*K)
-----> T = temperature (K)
Before you can plug the given values into the equation, you first need to convert Celsius to Kelvin.
P = ? atm R = 0.0821 L*atm/mol*K
V = 5.00 L T = 393 °C + 273.15 = 312.45 K
n = 7.10 moles
PV = nRT
P(5.00 L) = (7.10 moles)(0.0821 L*atm/mol*K)(312.45 K)
P(5.00 L) = 182.130
P = 36.4 atm
Answer:
Na.
Explanation:
- The oxidation-reduction reaction contains a reductant and an oxidant (oxidizing agent).
- An oxidizing agent, or oxidant, gains electrons and is reduced in a chemical reaction. Also known as the electron acceptor, the oxidizing agent is normally in one of its higher possible oxidation states because it will gain electrons and be reduced.
- A reducing agent (also called a reductant or reducer) is an element (such as calcium) or compound that loses (or "donates") an electron to another chemical species in a redox chemical reaction.
<em>2Na + S → Na₂S.</em>
<em></em>
Na is oxidized to Na⁺ in (Na₂S) (loses 1 electron). "reducing agent".
S is reduced to S²⁻ in (Na₂S) (gains 2 electrons). "oxidizing agent".
Answer:
John Dalton
Explanation:
John Dalton in 1808 suggested that all matter consists of tiny particles called atoms and that the atoms of a specific element are identical.
He postulated the Dalton's atomic theory which has the following important parts;
- All matters consists of indivisible particles called atoms
- Atoms of the same element are similar and are different from atoms of other elements.
- Atoms can neither be created nor destroyed.
- Atoms combine in simple whole ratios to form compounds.