<span>In the 19th century, scientists realized that gases in the atmosphere cause a "greenhouse effect" which affects the planet's temperature. These scientists were interested chiefly in the possibility that a lower level of carbon dioxide gas might explain the ice ages of the distant past. At the turn of the century, Svante Arrhenius calculated that emissions from human industry might someday bring a global warming. Other scientists dismissed his idea as faulty. In 1938, G.S. Callendar argued that the level of carbon dioxide was climbing and raising global temperature, but most scientists found his arguments implausible. It was almost by chance that a few researchers in the 1950s discovered that global warming truly was possible. In the early 1960s, C.D. Keeling measured the level of carbon dioxide in the atmosphere: it was rising fast. Researchers began to take an interest, struggling to understand how the level of carbon dioxide had changed in the past, and how the level was influenced by chemical and biological forces. They found that the gas plays a crucial role in climate change, so that the rising level could gravely affect our future. (This essay covers only developments relating directly to carbon dioxide, with a separate essay for Other Greenhouse Gases. Theories are discussed in the essay on Simple Models of Climate.)</span>
Answer:
Chemical reactions do not involve changes in the chemical bonds that join
atoms in compounds :
<u>False</u>
Explanation:
Chemical reaction are the reaction in which old bonds break and new bonds are formed . The formation of new bond result in formation of new compounds . This happen because new bond are result of linking different atoms by the bond.
For example : Water formation from Oxygen and Hydrogen is a chemical process :

Original(old) bonds are :
H-H bond in H2 and O-O bonds in O2
In H2 = Hydrogen is joined to Hydrogen
IN O2 = Oxygen is joined to oxygen
New Bonds =
O-H bonds in water (H2O)
Oxygen is joined to hydrogen = New Bond formation
Hence,
<u>Chemical reactions do involve changes in the chemical bonds that join
</u>
<u>atoms in compounds</u>
<u />
Since the sign is positive, the entropy increased by 88.48 J/K.
Examine the phases of the species present to determine whether a physical or chemical process will cause an increase or decrease in entropy. Keep in mind "Silly Little Goats" to aid you in telling.
[1 Sf K+1 + 1 Sf Br-1 (aq)] ([1Sf(KBr (s))])
[1(102.5) + 1(82.42)] - [1(96.44)] = 88.48 J/K
If the entropy has grown, we say that Delta S is positive, and if it has dropped, we say that Delta S is negative. Due to its ionic nature, KBr is soluble in water and causes the 'K(+)' ions to hydrate.
Learn more about Entropy here-
brainly.com/question/13146879
#SPJ4
Answer:
<em>Hydrogen.</em>
Explanation:
You've probably seen "
" which is the formula for water. It means that there's 2 hydrogen atoms, and one oxygen atom, in one molecule of water.
<em>Hope this helps! Feel free to mark me Brainliest if you feel this helped. :)</em>