Each carbon atom is covalently bonded to four other carbon atoms. A lot of energy is needed to separate the atoms in diamond. This is because covalent bonds are strong, and diamond contains very many covalent bonds. This makes diamond's melting point and boiling point very high.
Answer:
b) C = 0.50 J/(g°C)
Explanation:
∴ Q = 50 J
∴ m = 10.0 g
∴ ΔT = 35 - 25 = 10 °C
specific heat (C) :
⇒ C = Q / mΔT
⇒ C = 50 J / (10.0 g)(10 °C)
⇒ C = 0.50 J/(g°C)
You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!
group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1
we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!
Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.
The number of moles present in 29.5 grams of argon is 0.74 mole.
The atomic mass of argon is given as;
Ar = 39.95 g/mole
The number of moles present in 29.5 grams of argon is calculated as follows;
39.95 g ------------------------------- 1 mole
29.5 g ------------------------------ ?

Thus, the number of moles present in 29.5 grams of argon is 0.74 mole.
<em>"Your question seems to be missing the correct symbol for the element" </em>
Argon = Ar
Learn more here:brainly.com/question/4628363
Obviously since plant cell contains chloroplasts.