Answer:
I think the answer is increases
When you want to melt an ice, you only need the latent energy of fusion, <span>δhfus. We use the given value, then multiply this with the given amount to determine the amount of energy. Since the energy is per mole basis, use the molar mass of ice which is 18 g/mol. The solution is as follows:
</span>ΔH = 5.96 kJ/mol * 1 mol/18 g * 500 g
<em>ΔH = 165.56 kJ</em><span>
</span>
Answer:
A = 1,13x10¹⁰
Ea = 16,7 kJ/mol
Explanation:
Using Arrhenius law:
ln k = -Ea/R × 1/T + ln(A)
You can graph ln rate constant in x vs 1/T in y to obtain slope: -Ea/R and intercept is ln(A).
Using the values you will obtain:
y = -2006,9 x +23,147
As R = 8,314472x10⁻³ kJ/molK:
-Ea/8,314472x10⁻³ kJ/molK = -2006,9 K⁻¹
<em>Ea = 16,7 kJ/mol</em>
Pre-exponential factor is:
ln A = 23,147
A = e^23,147
<em>A = 1,13x10¹⁰</em>
<em></em>
I hope it helps!
Mg is magnesium. NO3 is nitrate. This gives you magnesium nitrate as an answer.
The answer is (3) 11,460 y. For this problem, you must know that the half life of C-14 is 5740 y and that nuclear decay processes are first order reactions (which means that the half life remains constant). For 25.00g to be left of a 100.0g sample, two half life must have elapsed (100*0.5*0.5=25). Each half life is 5730 y, so the total time elapsed is 5730 * 2 = 11,460 y.