1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jarptica [38.1K]
4 years ago
13

Graph the equation y=147x+60

Mathematics
1 answer:
tiny-mole [99]4 years ago
7 0
If you put the equation into graphing calculator online or manual, you can get the graph.

You might be interested in
Find the product. If the result is negative, enter "-". If the result is positive, enter "+". -7(- a2 ) 2 ( -b3 ).
m_a_m_a [10]

Answer:

The product is positive, thus it is \bold{+7a^4b^3}

Step-by-step explanation:

The full question in proper notation is:

"Find the product. If the result is negative, enter "-". If the result is positive, enter "+".

-7(-a^2)^2(-b^3)"

We have to work with it using Order of operations know as well as PEMDAS, thus expression inside parenthesis go first and exponents.

On this expression we have to work with exponents

(-a^2)^2 = (-a^2)(-a^2) =a^4

Thus we get

-7(-a^2)^2(-b^3)=-7a^4(-b^3)

Lastly we can work with multiplication and remembering that the multiplication of two negative signs becomes positive.

-7(-a^2)^2(-b^3)=7a^4b^3

So the final simplified expression is \bold{7a^4b^3}

5 0
3 years ago
Read 2 more answers
the ratio of the number of girls on a basketball team to the number of boys on the team is 5:4.what fraction of the players on t
Kazeer [188]
Well 5 + 4 is 9, and so if the girls are 5 in the ratio, the fraction would be 5/9. I hope this helps!
4 0
3 years ago
Read 2 more answers
Please help me on this moby max question
Llana [10]

Answer:

20+35x

Step-by-step explanation:

5 0
3 years ago
In the order of operations, expressions inside parentheses are evaluated before exponents.
Morgarella [4.7K]
Im guessing the answer is true.... not 100% sure tho
4 0
3 years ago
Read 2 more answers
Find the sum of the first 25 terms in this geometric series:<br> 8 + 6 + 4.5...
Ksivusya [100]

Step-by-step explanation:

Given the geometric sequence

8 + 6 + 4.5...

A geometric sequence has a constant ratio and is defined by

a_n=a_1\cdot r^{n-1}

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_{n+1}}{a_n}

\frac{6}{8}=\frac{3}{4},\:\quad \frac{4.5}{6}=\frac{3}{4}

\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}

r=\frac{3}{4}

\mathrm{The\:first\:element\:of\:the\:sequence\:is}

a_1=8

\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:

a_n=8\left(\frac{3}{4}\right)^{n-1}

\mathrm{Geometric\:sequence\:sum\:formula:}

a_1\frac{1-r^n}{1-r}

\mathrm{Plug\:in\:the\:values:}

n=25,\:\spacea_1=8,\:\spacer=\frac{3}{4}

=8\cdot \frac{1-\left(\frac{3}{4}\right)^{25}}{1-\frac{3}{4}}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=\frac{\left(1-\left(\frac{3}{4}\right)^{25}\right)\cdot \:8}{1-\frac{3}{4}}

=\frac{8\left(-\left(\frac{3}{4}\right)^{25}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}

=\frac{8\left(-\frac{3^{25}}{4^{25}}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{\frac{b}{c}}=\frac{a\cdot \:c}{b}

=\frac{\left(1-\frac{3^{25}}{4^{25}}\right)\cdot \:8\cdot \:4}{1}

\mathrm{Multiply\:the\:numbers:}\:8\cdot \:4=32

=\frac{32\left(-\frac{3^{25}}{4^{25}}+1\right)}{1}

=\frac{32\cdot \frac{4^{25}-3^{25}}{4^{25}}}{1}               ∵ \mathrm{Join}\:1-\frac{3^{25}}{4^{25}}:\quad \frac{4^{25}-3^{25}}{4^{25}}

=32\cdot \frac{4^{25}-3^{25}}{4^{25}}

=\frac{\left(4^{25}-3^{25}\right)\cdot \:32}{4^{25}}

=\frac{2^5\left(4^{25}-3^{25}\right)}{2^{50}}        ∵ \mathrm{Factor}\:32:\ 2^5,  \mathrm{Factor}\:4^{25}:\ 2^{50}

so

=\frac{4^{25}-3^{25}}{2^{45}}        ∵ \mathrm{Cancel\:}\frac{\left(4^{25}-3^{25}\right)\cdot \:2^5}{2^{50}}:\quad \frac{4^{25}-3^{25}}{2^{45}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a\pm \:b}{c}=\frac{a}{c}\pm \frac{b}{c}

=\frac{4^{25}}{2^{45}}-\frac{3^{25}}{2^{45}}      

=32-\frac{3^{25}}{2^{45}}            ∵  \frac{4^{25}}{2^{45}}=32

=32-0.024        ∵  \frac{3^{25}}{2^{45}}=0.024

=31.98            

Therefore, the sum of the first 25 terms in this geometric series: 31.98

3 0
3 years ago
Other questions:
  • Solve the inequality -23x&gt;23
    8·1 answer
  • PLEASE HELP 20 POINTS
    13·2 answers
  • Mary made a withdrawal of d dollars from her savings account. Her previous balance was $350, and her current balance is $280. Re
    9·1 answer
  • "Flip a coin; if it is heads, pick item A; if it is tails, flip the coin again; this time, if it is heads, choose B; if it is ta
    6·1 answer
  • Question in the picture, please give the answer and how you got it
    10·1 answer
  • Consider the function , f(x)=4x-5 what is the domain value that correspond to an output of f(x) = 11
    13·1 answer
  • Solve for the length of the hypotenuse
    7·2 answers
  • SOMEONE PLEASE HELP I WILL LITERALLY BLOW YOU I JUST NEED YOU TO ANSWER THIS pedros check register showed a balance of $550.94.
    14·1 answer
  • A rectangular fish tank has a base that is 9 inches
    6·1 answer
  • Which equation has the same solutions as 2x + x - 3 = 0?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!