It’s 33 hope it helped:) you were right btw the other person who answered it.
{tan(60) + tan(10)}/{1 - tan(60)*tan(10)} - {tan(60) - tan(10)}/{1 + tan(10)*tan(60)}
<span>ii) Taking LCM & simplifying with applying tan(60) = √3, the above simplifies to: </span>
<span>= 8*tan(10)/{1 - 3*tan²(10)} </span>
<span>iii) So tan(70) - tan(50) + tan(10) = 8*tan(10)/{1 - 3*tan²(10)} + tan(10) </span>
<span>= [8*tan(10) + tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)} </span>
<span>= [9*tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)} </span>
<span>= 3 [3*tan(10) - tan³(10)]/{1 - 3*tan²(10)} </span>
<span>= 3*tan(30) = 3*(1/√3) = √3 [Proved] </span>
<span>[Since tan(3A) = {3*tan(A) - tan³(A)}/{1 - 3*tan²(A)}, </span>
<span>{3*tan(10) - tan³(10)}/{1 - 3*tan²(10)} = tan(3*10) = tan(30)]</span>
Is this a graphing question or…
Answer:
5
Step-by-step explanation:
Absolute value |x| makes any number positive.
|5| = 5
Answer:
<em>isosce</em><em>les</em><em> </em><em>and</em><em> </em><em>right</em>
<em>I'm not sure</em>