Answer:
Use a formulae calculator on Google
Answer:
..................
Step-by-step explanation:
................................
Answer:
B is True
A, C. D are false
Step-by-step explanation:
Given :
Sample size, n = 120
Mean diameter, m = 10
Standard deviation, s = 0.24
Confidence level, Zcritical ; Z0.05/2 = Z0.025 = 1.96
The confidence interval represents how the true mean value compares to a set of values around the mean computed from a set of sample drawn from the population.
The population here is N = 10000
To obtain
Confidence interval (C. I) :
Mean ± margin of error
Margin of Error = Zcritical * s/sqrt(n)
Margin of Error = 1.96 * 0.24/sqrt(120)
Confidence interval for the 10,000 ball bearing :
10 ± 1.96 * (0.24) / sqrt(120)
Hence. The confidence interval defined as :
10 ± 1.96 * (0.24) / sqrt(120) is the 95% confidence interval for the mean diameter of the 10,000 bearings in the box.
Answer:
2x + 10
= 2(15) + 10
= 30 + 10
= 40
It will take 40 minutes to make and pack an order for 15 parts.
Step-by-step explanation:
<span>M can have a coordinate of (-9) or (1)
There are potentially 3 different places for point M to go. It can be placed to the left of point A, between points A and B, and to the right of point B. Let's check those three possibilities.
1. Left of point A. This works if the distance between M and A is the same as the distance between A and B. So
distance between A and B = 6 - (-1.5) = 6 + 1.5 = 7.5
So the location for M would be
-1.5 - 7.5 = -9
So point M can have the value of -9.
2. Between A and B.
This would also work. Since we want a 1:2 ratio, place M one third of the way from A to B. Since we already know the distance between A and B to be 7.5, that means that we should add 7.5/3 = 2.5 to the value of A. So
-1.5 + 2.5 = 1
So point M can also have the value of 1.
3. To the right of point B
This won't work. Point B will always be closer to M than point A will be. So it's impossible to get a ratio of 1:2.</span>