Hey there!!
Jason = 800 + Paul
Alex = Jason - 150
How much more does Alex have the Paul?
Let's take the equation of Alex
... Alex = Jason - 150
... Add 150 on both sides
... Alex + 150 = Jason
Now we have the equation for Jason,
... Jason = 800 + Paul , and we got Alex + 150 = Jason
... Now let's plug in the values
... Alex + 150 = 800 + Paul
Subtract 150 on both sides...
Alex = 800 - 150 + Paul
... Alex = 650 + Paul
Now we got the answer for our question :
The answer - Alex has $650 than Paul.
Hope my answer helps!!
Answer:
1.4x 2 +7x−9
~#^××+$|₹-÷)=-₹2^_!&:'#^%&%&×(}/'?!24&0(86-
![\begin{array}{rrrrr} 10x&-&18y&=&2\\ -5x&+&9y&=&-1 \end{array}~\hfill \implies ~\hfill \stackrel{\textit{second equation }\times 2}{ \begin{array}{rrrrr} 10x&-&18y&=&2\\ 2(-5x&+&9y&)=&2(-1) \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{rrrrr} 10x&-&18y&=&2\\ -10x&+&18y&=&-2\\\cline{1-5} 0&+&0&=&0 \end{array}\qquad \impliedby \textit{another way of saying \underline{infinite solutions}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-5x%26%2B%269y%26%3D%26-1%20%5Cend%7Barray%7D~%5Chfill%20%5Cimplies%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsecond%20equation%20%7D%5Ctimes%202%7D%7B%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%202%28-5x%26%2B%269y%26%29%3D%262%28-1%29%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-10x%26%2B%2618y%26%3D%26-2%5C%5C%5Ccline%7B1-5%7D%200%26%2B%260%26%3D%260%20%5Cend%7Barray%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Banother%20way%20of%20saying%20%5Cunderline%7Binfinite%20solutions%7D%7D)
if we were to solve both equations for "y", we'd get

notice, the 1st equation is really the 2nd in disguise, since both lines are just pancaked on top of each other, every point in the lines is a solution or an intersection, and since both go to infinity, well, there you have it.
well i have to see the equation to know