Answer:
a
$10,151
$11448.12
b

Step-by-step explanation:
From the question we are told that
The sample size is n = 19
The sample mean is
$10,800
The standard deviation is
$1095
The population mean is
$225
Given that the confidence level is 99% the level of significance is mathematically represented as
%
=> 
Now the critical values of
is obtained from the normal distribution table as

The reason we are obtaining values for
is because
is the area under the normal distribution curve for both the left and right tail where the 99% interval did not cover while
is the area under the normal distribution curve for just one tail and we need the value for one tail in order to calculate the confidence interval
Now the margin of error is obtained as

substituting values


The 99% confidence interval for the population mean yearly premium is mathematically represented as

substituting values


$10,151
$11448.12
The largest sample needed is mathematically evaluated as
![n = [\frac{Z_{\frac{\alpha }{2} } * \sigma }{\mu} ]](https://tex.z-dn.net/?f=n%20%3D%20%20%5B%5Cfrac%7BZ_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%20%20%20%7D%20%2A%20%20%5Csigma%20%7D%7B%5Cmu%7D%20%5D)
substituting values
![n = [ \frac{ 2.58 * 1095}{225} ]^2](https://tex.z-dn.net/?f=n%20%3D%20%20%5B%20%20%20%20%5Cfrac%7B%202.58%20%20%2A%20%201095%7D%7B225%7D%20%5D%5E2)

The central angle is about 74.8426. Try using the website Omni to help you out. It contains an arc length calculator.
4=3i ----> (4,3) 6-2i ------> (6,-2)
x1 y1 x2 y2
(4 , 3) (6 , -2) d=√(x2-x1)^2 +(y2-y1)^2
d=√(6-4)^2+(-2-3)^2 -----> d=√2^2+(-5)^2 ----> d=√29
Answer:
150 7th Graders and 200 8th graders
Step-by-step explanation:
Basically, add the parts of the ratio together and create 7. Then, to find out how much 1 part is equal to, divide the amount of students by the number of parts - so it would be like 350/7 = 50.
So now you know that 1 part is equal to 50 students. From here, you can multiply the two amounts of parts by 50.
3 x 50 = 150 7th Graders
4 x 50 = 200 8th Graders
Injured by Peter in the battle. He was smacked in the face by a Janet