1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
2 years ago
14

Please someone help me!!!!!!​

Mathematics
2 answers:
juin [17]2 years ago
7 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Use the Difference Identity: sin (A + B) = sin A cos B - cos A sin B

Use the following Half-Angle Identities:  

\sin\bigg(\dfrac{A}{2}\bigg)=\sqrt{\dfrac{1-\cos A}{2}}\\\\\cos\bigg(\dfrac{A}{2}\bigg)=\sqrt{\dfrac{1+\cos A}{2}}

Use the Pythagorean Identity: cos²A + sin²A = 1   -->   sin²A = 1 - cos²A

Use the Unit Circle to evaluate: \cos\dfrac{\pi}{4}=\sin\dfrac{\pi}{4}=\dfrac{1}{\sqrt2}

<u>Proof LHS → RHS</u>

\text{Given:}\qquad \qquad \qquad 1-2\sin^2\bigg(\dfrac{\pi}{4}-\dfrac{\theta}{2}\bigg)\\\\\text{Difference Identity:}\quad  1-2\bigg(\sin\dfrac{\pi}{4}\cdot \cos \dfrac{\theta}{2}-\cos \dfrac{\pi}{4}\cdot \sin\dfrac{\theta}{2}\bigg)^2\\\\\text{Unit Circle:}\qquad \qquad 1-2\bigg(\dfrac{1}{\sqrt2}\cos \dfrac{\theta}{2}-\dfrac{1}{\sqrt2}\sin \dfrac{\theta}{2}\bigg)^2\\\\\\\text{Half-Angle Identity:}\quad 1-2\bigg(\dfrac{\sqrt{1+\cos A}}{2}-\dfrac{\sqrt{1-\cos A}}{2}\bigg)^2

\text{Expand Binomial:}\quad 1-2\bigg(\dfrac{1+\cos A}{4}-\dfrac{2\sqrt{1-\cos^2 A}}{4}+\dfrac{1-\cos A}{4}\bigg)\\\\\text{Simplify:}\qquad \qquad \quad 1-2\bigg(\dfrac{2-2\sqrt{1-\cos^2 A}}{4}\bigg)\\\\\text{Pythagorean Identity:}\quad 1-\dfrac{1}{2}\bigg(2-2\sqrt{\sin^2 A}\bigg)\\\\\text{Simplify:}\qquad \qquad \qquad 1-\dfrac{1}{2}(2-2\sin A)\\\\\text{Distribute:}\qquad \qquad \qquad 1-(1-\sin A)\\\\.\qquad \qquad \qquad \qquad \quad =1-1+\sin A\\\\\text{Simplify:}\qquad \qquad \qquad \sin A

RHS = LHS:   sin A = sin A  \checkmark

ella [17]2 years ago
3 0

Answer:

see explanation

Step-by-step explanation:

Using the identity

cos2Θ = 1 - 2sin²Θ, then

1 - 2sin²(\frac{\pi }{4} - \frac{0}{2} )

= cos [2(\frac{\pi }{4} - \frac{0}{2} )]

= sos(\frac{\pi }{2} - Θ )

= cos\frac{\pi }{2}cosΘ + sin

= 0 × cosΘ + 1 × sinΘ

= 0 + sinΘ

= sinΘ = right side

You might be interested in
What will be the result of substituting 2 for x in both expressions below?
Gnom [1K]

Answer: pretty sure the answer is A

Step-by-step explanation:

1/2(2) + 4 = 1 + 4 = 5

2 + 6 - 1/2(2) -2 = 8 - 1 - 2 = 5

3 0
3 years ago
Read 2 more answers
Need help ASAP and will give brainliest if right!
Luba_88 [7]

Answer: The answer is converges r=1/7

4 0
3 years ago
Please help me with number 1, thanks
tekilochka [14]
What don't you get about the problem ?
5 0
3 years ago
Convert -18° to radians.
Fiesta28 [93]
0.314159


Is the answer
5 0
3 years ago
Nick has a bag of marbles. Without looking in the bag, he
Ulleksa [173]

Answer:

Step-by-step explanation:

Ok wait. Try add

4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the vertex form of: y=2x^2-5x+13
    14·1 answer
  • How to completely factor t^2+4tv+4v^2
    7·1 answer
  • -11(13 + v) =-121 hey do yall know the answe if so can yall show the work​
    13·1 answer
  • p is a polynomial of degree 5. p has roots of multiplicity 2 at t=4 and t=0, a root of multiplicity 1 at t=-4, and p(1)=2025. Fi
    11·1 answer
  • ANYONE???????????????????
    13·1 answer
  • Which expression could be entered into the calculator to evaluate (8 x 4)-12÷6)?<br>​
    10·1 answer
  • (-9x-3)+6&lt;93 help me out plz
    15·1 answer
  • A prism is completely filled with 1120 cubes that have edge lengths of 1/2 in. What is the volume of the prism?
    6·2 answers
  • Please answer all of this!!!! will give brainliest!!!
    10·1 answer
  • Joyce is comparing two different internet providers to see which is a better deal. The cost of service from Provider S can be re
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!