The correct answer would be b. range. you take the largest amount and subtract the smallest amount giving you the range.
Multiply (or distribute) the exponent outside the parenthesis with every exponent inside the parenthesis, remember that if there is no exponent shown, then the exponent is 1. Step 3: Apply the Negative Exponent Rule. Negative exponents in the numerator get moved to the denominator and become positive exponents.
Answer:
The surface area of right regular hexagonal pyramid = 82.222 cm³
Step-by-step explanation:
Given as , for regular hexagonal pyramid :
The of base side = 3 cm
The slant heights = 6 cm
Now ,
The surface area of right regular hexagonal pyramid = ![\frac{3\sqrt{3}}{2}\times a^{2} + 3 a \sqrt{h^{2}+ 3\times \frac{a^{2}}{4}}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D%5Ctimes%20a%5E%7B2%7D%20%2B%203%20a%20%5Csqrt%7Bh%5E%7B2%7D%2B%203%5Ctimes%20%5Cfrac%7Ba%5E%7B2%7D%7D%7B4%7D%7D)
Where a is the base side
And h is the slant height
So, The surface area of right regular hexagonal pyramid = ![\frac{3\sqrt{3}}{2}\times 3^{2} + 3 \times 3 \sqrt{6^{2}+ 3\times \frac{3^{2}}{4}}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D%5Ctimes%203%5E%7B2%7D%20%2B%203%20%5Ctimes%203%20%5Csqrt%7B6%5E%7B2%7D%2B%203%5Ctimes%20%5Cfrac%7B3%5E%7B2%7D%7D%7B4%7D%7D)
Or, The surface area of right regular hexagonal pyramid = ![\frac{3\sqrt{3}}{2}\times 9 + 9 \sqrt{36+ 3\times \frac{9}{4}}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%7D%7B2%7D%5Ctimes%209%20%2B%209%20%5Csqrt%7B36%2B%203%5Ctimes%20%5Cfrac%7B9%7D%7B4%7D%7D)
Or, The surface area of right regular hexagonal pyramid = 23.38 + 9 ×
∴ The surface area of right regular hexagonal pyramid = 23.38 + 9 × 6.538
I.e The surface area of right regular hexagonal pyramid = 23.38 + 58.842
So, The surface area of right regular hexagonal pyramid = 82.222 cm³ Answer