Hello!
This question is about which values you are changing when you are transforming an equation.
Let's go through the parent function for an absolute value equation and its various transformations.

Since we are only looking at horizontal and vertical transformations, we only need to worry about the c and d values.
The c value of a function determines a function's horizontal position, and the d value of a function determines a function's vertical position.
One thing to note here is that the c value is being subtracted from the x value, meaning that if the function is being transformed to the right, you would actually be subtracting that value, while the d value behaves like a normal value, if it is being added, the function is transformed up, and vice versa.
Now that we know this, let's write each expression.
a) 
b) 
c) 
d) 
Hope this helps!
Answer: the x-intercept is (-10,0), the y-intercept is (0,45/2)
Explanation:
First, we need to determine the function describing the line.
From the table, it is obvious that the y values increase by 9 every increase of 4 of the x values. So, the slope is 9/4 and the function looks like this:

with the y-intercept (or bias) b still unknown. This can be determined by using one of the point from the table, like so:

The above function form makes it easy to read off the y-intercept, which is (0,45/2) or (0,22.5). The x-intercept is obtained by setting y = 0 and solving for x:

The x-intercept is (-10,0)
Step-by-step explanation:
wheres the decimal to compare it to
The vertex form of a quadratic function is:
f(x) = a(x - h)² + k
The coordinate (h, k) represents a parabola's vertex.
In order to convert a quadratic function in standard form to the vertex form, we can complete the square.
y = 2x² - 5x + 13
Move the constant, 13, to the other side of the equation by subtracting it from both sides of the equation.
y - 13 = 2x² - 5x
Factor out 2 on the right side of the equation.
y - 13 = 2(x² - 2.5x)
Add (b/2)² to both sides of the equation, but remember that since we factored 2 out on the right side of the equation we have to multiply (b/2)² by 2 again on the left side.
y - 13 + 2(2.5/2)² = 2(x² - 2.5x + (2.5/2)²)
y - 13 + 3.125 = 2(x² - 2.5x + 1.5625)
Add the constants on the left and factor the expression on the right to a perfect square.
y - 9.875 = 2(x - 1.25)²
Now, we need y to be by itself again so add 9.875 back to both sides of the equation to move it back to the right side.
y = 2(x - 1.25)² + 9.875
Vertex: (1.25, 9.875)
Solution: y = 2(x - 1.25)² + 9.875
Or if you prefer fractions
y = 2(x - 5/4)² + 79/8
3-1 finds for she did to is to is to to fix l Fick