Answer:
Part A
![The \ circumradius, \ R = \dfrac{a}{cos \left(\dfrac{\pi}{n} \right)}](https://tex.z-dn.net/?f=The%20%5C%20circumradius%2C%20%5C%20%20R%20%3D%20%5Cdfrac%7Ba%7D%7Bcos%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7Bn%7D%20%5Cright%29%7D)
Plugging in the given values we get;
![The \ circumradius, \ R = \dfrac{6 \cdot \sqrt{3} }{cos \left(\dfrac{\pi}{6} \right)} = \dfrac{6 \cdot \sqrt{3} }{\left(\dfrac{\sqrt{3} }{2} \right)} = 6 \cdot \sqrt{3} \times \dfrac{2}{\sqrt{3} } = 12](https://tex.z-dn.net/?f=The%20%5C%20circumradius%2C%20%5C%20%20R%20%3D%20%5Cdfrac%7B6%20%5Ccdot%20%5Csqrt%7B3%7D%20%7D%7Bcos%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%5Cright%29%7D%20%3D%20%5Cdfrac%7B6%20%5Ccdot%20%5Csqrt%7B3%7D%20%7D%7B%5Cleft%28%5Cdfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%5Cright%29%7D%20%3D%206%20%5Ccdot%20%5Csqrt%7B3%7D%20%20%5Ctimes%20%5Cdfrac%7B2%7D%7B%5Csqrt%7B3%7D%20%7D%20%20%3D%2012)
R = 12 inches
The radius of the circumscribing circle is 12 inches
Part B
The length of each side of the hexagon, 's', is;
![s = a \times 2 \times tan \left(\dfrac{\pi}{n} \right)](https://tex.z-dn.net/?f=s%20%3D%20a%20%5Ctimes%202%20%5Ctimes%20tan%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7Bn%7D%20%5Cright%29)
Therefore;
![s = 6 \cdot \sqrt{3} \times 2 \times tan \left(\dfrac{\pi}{6} \right) = 6 \cdot \sqrt{3} \times 2 \times \left(\dfrac{1}{\sqrt{3} } \right) = 12](https://tex.z-dn.net/?f=s%20%3D%206%20%5Ccdot%20%5Csqrt%7B3%7D%20%20%5Ctimes%202%20%5Ctimes%20tan%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%5Cright%29%20%3D%206%20%5Ccdot%20%5Csqrt%7B3%7D%20%20%5Ctimes%202%20%5Ctimes%20%5Cleft%28%5Cdfrac%7B1%7D%7B%5Csqrt%7B3%7D%20%7D%20%5Cright%29%20%3D%2012)
s = 12 inches
The perimeter, P = n × s = 6 × 12 = 72 inches
The perimeter of the hexagon is 72 inches
Step-by-step explanation:
The given parameters of the regular hexagon are;
The length of the apothem of the regular hexagon, a = 6·√3 inches
The relationship between the apothem, 'a', and the circumradius, 'R', is given as follows;
![a = R \cdot cos \left(\dfrac{\pi}{n} \right)](https://tex.z-dn.net/?f=a%20%3D%20R%20%5Ccdot%20cos%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7Bn%7D%20%5Cright%29)
Where;
n = The number of sides of the regular polygon = 6 for a hexagon
'a = 6·√3 inches', and 'R' are the apothem and the circumradius respectively;
Part A
Therefore, we have;
![The \ circumradius, \ R = \dfrac{a}{cos \left(\dfrac{\pi}{n} \right)}](https://tex.z-dn.net/?f=The%20%5C%20circumradius%2C%20%5C%20%20R%20%3D%20%5Cdfrac%7Ba%7D%7Bcos%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7Bn%7D%20%5Cright%29%7D)
Plugging in the values gives;
![The \ circumradius, \ R = \dfrac{6 \cdot \sqrt{3} }{cos \left(\dfrac{\pi}{6} \right)} = \dfrac{6 \cdot \sqrt{3} }{\left(\dfrac{\sqrt{3} }{2} \right)} = 6 \cdot \sqrt{3} \times \dfrac{2}{\sqrt{3} } = 12](https://tex.z-dn.net/?f=The%20%5C%20circumradius%2C%20%5C%20%20R%20%3D%20%5Cdfrac%7B6%20%5Ccdot%20%5Csqrt%7B3%7D%20%7D%7Bcos%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%5Cright%29%7D%20%3D%20%5Cdfrac%7B6%20%5Ccdot%20%5Csqrt%7B3%7D%20%7D%7B%5Cleft%28%5Cdfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%5Cright%29%7D%20%3D%206%20%5Ccdot%20%5Csqrt%7B3%7D%20%20%5Ctimes%20%5Cdfrac%7B2%7D%7B%5Csqrt%7B3%7D%20%7D%20%20%3D%2012)
The circumradius, R = 12 inches
Part B
The length of each side of the hexagon, 's', is given as follows;
![s = a \times 2 \times tan \left(\dfrac{\pi}{n} \right)](https://tex.z-dn.net/?f=s%20%3D%20a%20%5Ctimes%202%20%5Ctimes%20tan%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7Bn%7D%20%5Cright%29)
Therefore, we get;
![s = 6 \cdot \sqrt{3} \times 2 \times tan \left(\dfrac{\pi}{6} \right) = 6 \cdot \sqrt{3} \times 2 \times \left(\dfrac{1}{\sqrt{3} } \right) = 12](https://tex.z-dn.net/?f=s%20%3D%206%20%5Ccdot%20%5Csqrt%7B3%7D%20%20%5Ctimes%202%20%5Ctimes%20tan%20%5Cleft%28%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%5Cright%29%20%3D%206%20%5Ccdot%20%5Csqrt%7B3%7D%20%20%5Ctimes%202%20%5Ctimes%20%5Cleft%28%5Cdfrac%7B1%7D%7B%5Csqrt%7B3%7D%20%7D%20%5Cright%29%20%3D%2012)
The length of each side of the hexagon, s = 12 inches
The perimeter of the hexagon, P = n × s = 6 × 12 = 72 inches
The perimeter of the hexagon = 72 inches