Answer:
12.33
Step-by-step explanation:
6x - 2 + 9x - 3 = 180° (linear pair)
6x + 9x - 2 - 3 = 180°
15x - 5 = 180°
15x = 180 + 5
15x = 185
x = 185/15
x = 12.33
hope this helps you!
Step-by-step explanation:
so he already down 20 ft so he ascends (goes up) 9 feet, so hes at 11 feet right now. then he descends 12 (goes down) feet so hes at 23 feet. lastly he ascends 15 feet (goes up) more. so the answer is 8
The slope of the function for pronghorn antelope is 60.78 which infers that the rate of speed of the pronghorn is 60.78 miles per hour.
7) The given function that represents the speed of the pronghorn is
y = 60.78x - 5.4
Comparing this function with the general equation of a straight line
y = mx + c we can conclude that the slope of the function is 60.78 .
So the Pronghorn's rate of speed is 60.78 miles per hour.
8) Now the speed of the cheetah is given in the form of a table.
Let us take any two points on the graph
(0.5,21.85) and (2,118.60)
Slope of the line passing through these two points
= (118.6-21.85)/(2-0.5)
=64.5
So the slope of the graph is 64.5 and the average rate of speed of the Cheetah is 64.5 miles per hour.
9) From the above two slopes and the rate of speed we can conclude that the speed of the cheetah is 64.5 mph which is greater than that of the pronghorn 's speed of 60.78 miles per hour.
To learn more about slope visit:
brainly.com/question/13281781
#SPJ1
If your directrix is a "y=" line, that means that the parabola opens either upwards or downwards (as opposed to the left or the right). Because it is in the character of a parabola to "hug" the focus, our parabola opens upwards. The vertex of a parabola sits exactly halfway between the directrix and the focus. Since our directrix is at y = -2 and the focus is at (1, 6) AND the parabola opens upward, the vertex is going to sit on the main transversal, which is also the "line" the focus sits on. The focus is on the line x = 1, so the vertex will also have that x coordinate. Halfway between the y points of the directrix and the focus, -2 and 6, respectively, is the y value of 2. So the vertex sits at (1, 2). The formula for this type of parabola is
where h and k are the coordinates of the vertex and p is the DISTANCE that the focus is from the vertex. Our focus is 4 units from the vertex, so p = 4. Filling in our h, k, and p:
. Simplifying a bit gives us
. We can begin to isolate the y by dividing both sides by 16 to get
. Then we can add 2 to both sides to get the final equation
, choice 4 from above.