Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
<span>0.4x + 6.1 = 0
0.4x = - 6.1
x = - 6.1 / 0.4
x = - 15.25</span>
Answer:
C. 430
Step-by-step explanation:
length: 11
weight: 5
height (double of weight): 10
2 * (5 * 11 + 10 * 11 + 10 * 5)= 430
So we have the equation:

Then we need to multiply by 4 on both sides to get rid of the denominator on the left:

Then we subtract 9 on both sides to solve for z:

Therefore the answer is z = -0.6.
Answer:
Number lines can show what the distance is that you have traveled from one point to the other. You would be able to count on the number line.