Assuming you meant is
The answer would be :
Hope this helps !
Photon
However, your equation seems weird :o
1. 4x - 8 + 2x + (-5x) + x^2 - 3 = 4x - 8 + 2x - 5x + x^2 - 3...now, we just combine like terms....lets group them...it will be easier ...x^2 + (4x + 2x - 5x ) - 8 - 3 = x^2 + x - 11
2. 2x + 5x = 8x
3. 2r + 4 + 3x - 2 = 3x + 2r + (4 - 2) = 3x + 2r + 2
4. 3x - 2y - x + 5y = (3x - x) + (5y - 2y) = 2x + 3y
5. 2y^2 - 8y^3 + 5y - 5y^2 + 4y^3 = (4y^3 - 8y^3) + (2y^2 - 5y^2) + 5y =
-4y^3 - 3y^2 + 5y
Answer:
0.38268343
Step-by-step explanation:
cos(
67.5
)
Rewrite
67.5
as an angle where the values of the six trigonometric functions are known divided by 2
.
cos
(
135\
2)
Apply the cosine half-angle identity.
±
√
1
+
cos
(
135
)
2
Change the
±
to
+
because cosine is positive in the first quadrant.
√
1
+
cos
(
135
)
2
Simplify
√
1
+
cos
(
135
)
2
√
2
−
√
2
2
The result can be shown in multiple forms.
Exact Form:
√
2
−
√
2
2
Decimal Form:
0.38268343
…
Let's begin by breaking each number down into its prime factors: 4 = 2 x 2 5 = 5 6 = 2 x 3 Next, let's determine the Lowest Common Multiple (LCM) of the numbers 4, 5, and 6 by multiplying all common and unique prime factors of each number: common prime factors: 2 unique prime factors: 2,5,3 LCM = 2 x 2 x 5 x 3 = 60 Next, let's determine how many times 60 goes into 10,000 (excluding remainder): 10,000/60 = 166 and 2/3 Multiples of ALL 3 numbers (4,5,6) = 166 Next, let's determine the Lowest Common Multiple (LCM) of the numbers 4 and 5 by multiplying all common and unique prime factors of each number: common prime factors: none
unique prime factors: 2 x 2 x 5
LCM = 2 x 2 x 5 = 20 Next, let's determine how many times 20 goes into 10,000:
10,000/20 = 500
Multiples of BOTH numbers (4 and 5) = 500 Finally, let's subtract the multiples of ALL three numbers (4,5,6) from the multiples of BOTH numbers (4 and 5) to get our answer: Multiples of ONLY numbers 4 and 5 (excluding 6): 500 - 166 = <span>334</span>