35g Mg x 1mol / 24g = 840 mol
Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
The answer is [Ne] 3s^2 3p^5 because chlorine is the fifth element in the 3rd row of elements in in p orbital
Moles = n = 3.91 mol
Pressure = P = 5.35 atm
Temperature = T = 323 K
Volume = V = ?
Formula used: Ideal Gas Equation is used,
P V = n R T
Solving for V,
V = n R T / P
Putting Values,
V = (3.91 mol × 0.0825 atm.L.mol⁻¹.K⁻¹ × 323 K) ÷ 5.35 atm
V = 19.36 L
One chemical property would be reactivity of a particular substance.