The % yield of Ca(OH)₂ : 62.98%
<h3>Further eplanation
</h3>
Percent yield is the compare of the amount of product obtained from a reaction with the amount you calculated
General formula:
Percent yield = (Actual yield / theoretical yield )x 100%
An actual yield is the amount of product actually produced by the reaction. A theoretical yield is the amount of product that you calculate from the reaction equation according to the product and reactant coefficients
Reaction
CaO + H₂O ⇒ Ca(OH)₂
mass CaO= 4.2 g
mol CaO(MW=56,0774 g/mol) :

mol Ca(OH)₂ based on mol CaO
mol ratio CaO : Ca(OH)₂,= 1 : 1, so mol Ca(OH)₂ = 0.075
mass Ca(OH)₂(MW=74,093 g/mol) ⇒ theoretical

% yield :

The result for TEST FOR LIFE is that the sample produces ATP. The sample is plant.
D Is going to be your answer
Explanation:
The chloroplasts are cell structures that are photosynthesis. The Golgi apparatus is the site transport of substance out of the cell. Mitochondria is the site of cellular respiration.
The two main functions of organelle is that it stores the herediatary material, DNA and it coordinates the cell's activities like growth, intermediary metabolism, protein synthesis, and reproduction. Eukaryotes are the cells of advanced organisms have a nucleus.
The results of the sample produces ATP, the sample is plant and the plant cells have an envelope surrounding the nucleus.
Hope this helps.!!! And please mark brainliest thank you!!
Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL
<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>