1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
14

What is 5,672 times 8,947

Mathematics
2 answers:
diamong [38]3 years ago
7 0
The answer is 50,747,387
Bad White [126]3 years ago
5 0

Answer:

50747384

Step-by-step explanation:

grab a calculator and put in the problom then push the = sign

You might be interested in
HELP!! joels apartment building is 42 ft tall and casts a shadow of 20ft. If Joel is 6 ft tall, how long is his shadow
zhenek [66]

Step-by-step explanation:

an object and its shadow create a right-angled triangle.

2 objects and their shadows create 2 similar right-angled triangles.

that means the angles are the same, and the side lengths of one triangle all correlate with the corresponding side lengths of the other triangle via the same factor.

so,

42 × f = 6

f = 6/42 = 1/7

the length of Joel's shadow is then

20 × f = 20 × 1/7 = 2.857142857... ft

5 0
3 years ago
What is the perimeter, in terms of x, of the rectangle shown here?​
MaRussiya [10]
8x^2+10x-18
The explanation is in the picture below if needed

3 0
3 years ago
A teacher has an annual income of $55,125.
kow [346]

Answer:

A - 3307,50

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Terry skated 2 miles in 1/2 hour. what is the unit rate that she skates
nekit [7.7K]
4mph
4 miles per hour
3 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Other questions:
  • Bring the help!!!!!!!!!!!!!!!!!
    15·1 answer
  • What is the period of f(x) = sin(x)?
    11·2 answers
  • Find the value of cosAcos2Acos3A...........cos998Acos999A where A=2π/1999
    7·2 answers
  • The length of a rectangle is 3/2 units greater than it's width. if the width is w, which expression gives the perimeter of the r
    15·1 answer
  • Does anyone know the steps to this you don't have to give me the answers but just the steps plz​
    15·1 answer
  • Help someone please​
    15·1 answer
  • A=90<br> B=38<br> C=45<br> D=52<br> Thanks
    7·1 answer
  • Need help please finding x
    10·1 answer
  • A customer buys three packets of cookies that
    12·2 answers
  • The distance traveled by a falling object is modeled by the equation below, where s is the distance fallen, g is gravity, and t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!