It speeds up small particles
Electrons in an atom can be classified as core electrons and valence electrons. Valence electrons are those electrons which are present in valence shell and participates in bond formation. While, Core electrons are all remaining electrons which are not present in valence shell, hence not take part in bonding.
Atomic number of Selenium (Se) is 34 hence it has 34 electrons with following electronic configuration;
1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁴
From electronic configuration it is found that the valence shell is 4, and the number of electrons present in valence shell are 6. So,
Core Electrons = Total Electrons - Valence Electrons
Core Electrons = 34 - 6
Core Electrons = 28
Result:
There are 28 core electrons in Selenium.
Ca (Clo3)2(s) ⇒ Ca Cl2 (s) + 3 O2 (g)
Answer:
1) thiamine pyrophosphate -activation of aldehydes
2) coenzyme A -acyl group transfer
3) biotin -CO2 activation/transfer
4) NAD -oxidation/reduction
Explanation:
1. Thiamine pyrophosphate: This is a derivative of Vitamin B1 also known as thiamine. It contains a pyrimidine group linked to the thiazole ring. This connection is further linked to the pyrophosphate group. It functions as a coenzyme in all reactions involving alpha-keto acids. This produces activated aldehydes that could be subject to oxidation.
2. Coenzyme A: This cofactor is a thiol that reacts with carboxylic acids to form thioesters. In so doing, it carries the acyl group. In this condition, it can also be referred to as acyl CoA.
3. Biotin: Also known as Vitamin B7, biotin consists of an ureido ring merged with tetrahydrothiophene. The ureido ring contains the CO2 that can be transferred or activated. Five carboxylase enzymes use biotin as a cofactor in processes such as fat synthesis, glucose generation and the breakdown of sugar.
4. NAD: Nicotinamide adenine dinucleotide consists of two dinucleotides connected to each other at their phosphate groups. NAD exists in two states which are the NAD+ and NADH states. These two states serve as oxidizing and reducing agents respectively. The oxidizing agent becomes reduced to NADH after accepting electrons from other compounds. NADH donates an electron and becomes oxidized to NAD+.