Answer:
<u>Option b. (x = 3, y = 20, z = -14)</u>
Step-by-step explanation:
Given:
2x + 2y + 3z = 4
5x + 3y + 5z = 5
3x + 4y + 6z = 5
Solve using Cramer’s rule
∴ ![\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] =\left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%263%5C%5C5%263%265%5C%5C3%264%266%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
∴A = ![\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] = -1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%263%5C%5C5%263%265%5C%5C3%264%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20-1)
Ax = ![\left[\begin{array}{ccc}4&2&3\\5&3&5\\5&4&6\end{array}\right] = -3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%262%263%5C%5C5%263%265%5C%5C5%264%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20-3)
Ay = ![\left[\begin{array}{ccc}2&4&3\\5&5&5\\3&5&6\end{array}\right] =-20\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%264%263%5C%5C5%265%265%5C%5C3%265%266%5Cend%7Barray%7D%5Cright%5D%20%3D-20%5C%5C)
Az = ![\left[\begin{array}{ccc}2&2&4\\5&3&5\\3&4&5\end{array}\right] = 14](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%264%5C%5C5%263%265%5C%5C3%264%265%5Cend%7Barray%7D%5Cright%5D%20%3D%2014)
∴ x = Ax/A = -3/-1 = 3
y = Ay/A = -20/-1 = 20
z = Az/A = 14/-1 = -14
<u>So, the answer is option b. (x = 3, y = 20, z = -14)</u>
Answer:
log₅(3125) = 5
Step-by-step explanation:
Given:
log₅(3125)
Now,
using the property of log function that
logₐ(b) = 
thus,
Therefore, applying the above property, we get
⇒
(here log = log base 10)
now,
3125 = 5⁵
thus,
⇒ 
Now,
we know from the properties of log function that
log(aᵇ) = b × log(a)
therefore applying the above property we get
⇒ 
or
⇒ 5
Hence,
log₅(3125) = 5
Answer:
- <u>Question 1:</u>
<u />
<u />
- <u>Question 2:</u>
<u />
<u />
- <u>Question 3:</u>
<u />
<u />
- <u>Question 4:</u>
<u />
Explanation:
<u>Question 1: Write down the differential equation the mass of the bacteria, m, satisfies: m′= .2m</u>
<u></u>
a) By definition: 
b) Given: 
c) By substitution: 
<u>Question 2: Find the general solution of this equation. Use A as a constant of integration.</u>
a) <u>Separate variables</u>

b)<u> Integrate</u>


c) <u>Antilogarithm</u>



<u>Question 3. Which particular solution matches the additional information?</u>
<u></u>
Use the measured rate of 4 grams per hour after 3 hours

First, find the mass at t = 3 hours

Now substitute in the general solution of the differential equation, to find A:

Round A to 1 significant figure:
<u>Particular solution:</u>

<u>Question 4. What was the mass of the bacteria at time =0?</u>
Substitute t = 0 in the equation of the particular solution:

The slope is 10. For every 1 increase in x, y increases by 10.
The answer would be- P=$116.07 because you have to x all the numbers then add some