X and y represent the two students.
Teacher wants to spend at least $5 in each of x and y. That means x or y could be either equal to 5 or higher than 5.
x ≥ 5
y ≥ 5
Teacher only spends under $30. That means the sum of x and y couldn't be equal to higher than 30. It should be lower than 30.
x + y < 30
The correct answer is option D
Answer:
$2.25
Step-by-step Explanation:
Divide 15% by 100% to get 0.15
0.15 x $15 = $2.25
The stylist must be happy.
Find the next two terms in the given sequence, then write it in recursive form. A.) {7,12,17,22,27,...} B.) { 3,7,15,31,63,...}
iren [92.7K]
Answer:
A) a_n = 5n + 2
B) a_n = (2^(n + 1)) - 1
Step-by-step explanation:
A) The sequence is given as;
{7,12,17,22,27,...}
The differences are:
5,5,5,5.
This is an arithmetic sequence following the formula;
a_n = a_1 + (n - 1)d
d is 5
Thus;
a_n = a_1 + (n - 1)5
Now, a_1 = 7. Thus;
a_n = 7 + 5n - 5
a_n = 5n + 2
B) The sequence is given as;
{ 3,7,15,31,63,...}
Now, let's write out the differences of this sequence:
Differences are:
4, 8, 16, 32
This shows that it is a geometric sequence with a common ratio of 2.
In the given sequence, a_1 = 3 and a_2 = 7 and a_3 = 15
Thus, a_2 = 2a_1 + 1
Also, a_(2 + 1) = 2a_2 + 1
Combining both equations, we can deduce that: a_(n + 1) = 2a_n + 1
Thus; a_n can be expressed as:
a_n = (2^(n + 1)) - 1
There really is no single "obvious" choice here...
Possibly the sequence is periodic, with seven copies of -1 followed by six copies of 0, or perhaps seven -1s and seven 0s. Or maybe seven -1s, followed by six 0s, then five 1s, and so on, but after a certain point it would seem we have to have negative copies of a number, which is meaningless.
Or maybe it's not periodic, and every seventh value in the sequence is incremented by 1? Who knows?
I'll go ahead and assume the latter case, that the sequence is not periodic, since that's technically somewhat easier to manage. We can assign the following rule to the

-th term in the sequence:


for

.
So the generating function for this sequence might be

As to what is meant by "closed form", I'm not sure. Would this answer be acceptable? Or do you need to find a possibly more tractable form for the coefficient not in terms of the floor function?
There is no image srry .-.