From what i see, i guess the answer may be B. it looks like it, but i dont really know.
Answer:
A
Step-by-step explanation:
Answer:
a.) f(x) =
where 90 < x < 120
b.) 
c.) 
d.) 
Step-by-step explanation:
Let
X be a uniform random variable that denotes the actual charging time of battery.
Given that, the actual recharging time required is uniformly distributed between 90 and 120 minutes.
⇒X ≈ ∪ ( 90, 120 )
a.)
Probability density function , f (x) =
where 90 < x < 120
b.)
P(x < 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{90} = \frac{1}{30} [ 110 - 90 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B90%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2090%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
c.)
P(x > 100 ) = 
= ![\frac{1}{30}[x]\limits^{120}_{100} = \frac{1}{30} [ 120 - 100 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B120%7D_%7B100%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20120%20-%20100%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
d.)
P(95 < x< 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{95} = \frac{1}{30} [ 110 - 95 ] = \frac{1}{30} [ 15] = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B95%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2095%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2015%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
Answer:

Step-by-step explanation:
we have a exponential function of the form

where
y is the population of bacteria
a is the initial value
r is the rate of growth
x is the number of hours
we have
a=3,000 bacteria

For x=2, y=3,300
substitute


Apply square root both sides




substitute in the equation


<u><em>Predict how many bacteria will be present after 16 hours</em></u>
For x=16 hours
substitute


Answer:
sdfghjkl;
Step-by-step explanation:
asjty5d7u
hyjur6
fgiufctcuvty
86bvygf7