Answer:
In the explanation
Step-by-step explanation:
Going to start with the sum identities
sin(x+y)=sin(x)cos(y)+sin(y)cos(x)
cos(x+y)=cos(x)cos(y)-sin(x)sin(y)
sin(x)cos(x+y)=sin(x)cos(x)cos(y)-sin(x)sin(x)sin(y)
cos(x)sin(x+y)=cos(x)sin(x)cos(y)+cos(x)sin(y)cos(x)
Now we are going to take the line there and subtract the line before it from it.
I do also notice that column 1 have cos(y)cos(x)sin(x) in common while column 2 has sin(y) in common.
cos(x)sin(x+y)-sin(x)cos(x+y)
=0+sin(y)[cos^2(x)+sin^2(x)]
=sin(y)(1)
=sin(y)
Answer:

Step-by-step explanation:
Given
per person
Required
Represent as an equation
For 1 person, the admission fee is 2
For p people, the admission fee will be 2p.
Hence:

Answer:
(-3,2) is located in the solution region.
Step-by-step explanation:
Answer:
<em>Hope the link helps! Sorry I didn't explain. I couldn't find the less than sign. </em>