Answer:
I think the answer is (3,10) sorry if I got this wrong!
Step-by-step explanation:
Answer:
Probability that Caroline buys fruit, a CD or both is 0.76.
Step-by-step explanation:
Let event A = Caroline buys fruit, event B = Caroline buys CD, Ac and Bc are complementary events.
Events AB, ABc, AcB and AcBc are jointly exhaustive and disjoint, hence P(AB) + P(ABc) + P(AcB) +P(AcBc) =1.
Events A and B independent, hence Ac and Bc independent too and probability P(AcBc) = P(Ac)*P(Bc) = (1 - P(A))(1-P(B)) = 0.6*0.4 = 0.24.
Required probability P(AB + ABc + AcB ) = P(AB) + P(ABc) + P(AcB) = 1- P(AcBc) = 1 - 0.24 = 0.76.
Answer:
The set of polynomial is Linearly Independent.
Step-by-step explanation:
Given - {f(x) =7 + x, g(x) = 7 +x^2, h(x)=7 - x + x^2} in P^2
To find - Test the set of polynomials for linear independence.
Definition used -
A set of n vectors of length n is linearly independent if the matrix with these vectors as columns has a non-zero determinant.
The set is dependent if the determinant is zero.
Solution -
Given that,
f(x) =7 + x,
g(x) = 7 +x^2,
h(x)=7 - x + x^2
Now,
We can also write them as
f(x) = 7 + 1.x + 0.x²
g(x) = 7 + 0.x + 1.x²
h(x) = 7 - 1.x + 1.x²
Now,
The coefficient matrix becomes
A = ![\left[\begin{array}{ccc}7&1&0\\7&0&1\\7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%261%260%5C%5C7%260%261%5C%5C7%26-1%261%5Cend%7Barray%7D%5Cright%5D)
Now,
Det(A) = 7(0 + 1) - 1(7 - 7) + 0
= 7(1) - 1(0)
= 7 - 0 = 7
⇒Det(A) = 7 ≠ 0
As the determinant is non- zero ,
So, The set of polynomial is Linearly Independent.
It’s a blank screen .. what’s the question ?