Answer:
It's the 3rd one, that you've selected in the picture.
Step-by-step explanation:
Used a graphing calculator to check,
Hope this is helpful.
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that 
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus


Heights of 29.5 and below could be a problem.
<h2>
Answer with explanation:</h2>
In statistics, The Type II error occurs when the null hypothesis is false, but fails to be rejected.
Given : Suppose the null hypothesis,
, is: Darrell has enough money in his bank account to purchase a new television.
Then , Type II error in this scenario will be when the null hypothesis is false, but fails to be rejected.
i.e. Darrell has not enough money in his bank account to purchase a new television but fails to be rejected.
X^2 + y^2 = 225
The radius is 15.
ANswer is C