Answer:
MO = 17
Step-by-step explanation:
First, you need to define what if the unknown x.
segment MN and NO are equal to MO.
thus, your equation for the combination is x +8
Now set the values equal to each other
x + 8 = 3x - 10 (subtract x from both sides)
8 = 2x - 10 ( get your x value alone, add 10 to both sides)
18 = 2x (simplfy)
x = 9
Now plug x value into MO
3 (9) - 10 = 17
Check with opposing equation:
9 + 8 = 17 √
The quotient of the provided division in which binomial is divided by a quadratic equation is x+2.
<h3>What is the quotient?</h3>
Quotient is the resultant number which is obtained by dividing a number with another. Let a number <em>a</em> is divided by number b. Then the quotient of these two number will be,

Here, (a, b) are the real numbers.
The given division expression is,

Let the quotient of this division problem is f(x). Thus,

Factor the numerator expression as,

Thus, the quotient of the provided division in which binomial is divided by a quadratic equation is x+2.
Learn more about the quotient here;
brainly.com/question/673545
Answer:
0.57142858 is the answer hope this helped
100 Is I was just like oh oh and then you are in the church