<h3>Area of shape P = 12 square cm</h3>
Explanation:
Shape P is a triangle with the base of 4 units across the horizontal portion up top.
The height of the triangle is 6 units. Count the spaces down the middle of the triangle and you should get 6 spaces.
Area = base*height/2
Area = 4*6/2
Area = 24/2
Area = 12 square cm.
Step-by-step explanation:
3d=dx3
3x12=36
50-36=14
We will use the right Riemann sum. We can break this integral in two parts.

We take the interval and we divide it n times:

The area of the i-th rectangle in the right Riemann sum is:

For the first part of our integral we have:

For the second part we have:

We can now put it all together:
![\sum_{i=1}^{i=n} [(\Delta x)^4 i^3-6(\Delta x)^2i]\\\sum_{i=1}^{i=n}[ (\frac{3}{n})^4 i^3-6(\frac{3}{n})^2i]\\ \sum_{i=1}^{i=n}(\frac{3}{n})^2i[(\frac{3}{n})^2 i^2-6]](https://tex.z-dn.net/?f=%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%20%5B%28%5CDelta%20x%29%5E4%20i%5E3-6%28%5CDelta%20x%29%5E2i%5D%5C%5C%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%5B%20%28%5Cfrac%7B3%7D%7Bn%7D%29%5E4%20i%5E3-6%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2i%5D%5C%5C%0A%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2i%5B%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2%20i%5E2-6%5D)
We can also write n-th partial sum:
Answer:
x = -70
Step-by-step explanation:
x+47=−23
Subtract 47 from both sides.
x+47−47=−23−47
x = −70
1. (x + 6)(x + -12)
2. (x + 10)(x - 10) = x² - 100
3. (x - 6)(x + 17) = x² + 11x - 102
4. (-x + 8)(x - 5) = -x² + 13x - 40
5. (x + 13)(x + 8) = x² + 21x + 104
6. (x + 2)(x + 7) = x² + 9x + 14