1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
6

In a "worst-case" design scenario, a 2000 kg elevator with broken cables is falling at 4.00 m/s when it first contacts a cushion

ing spring at the bottom of the shaft. The spring is supposed to stop the elevator, compressing 2.00 m as it does so. Spring coefficient is 10.6 kN/m. During the motion a safety clamp applies a constant 17000-N frictional force to the elevator.1. What is the speed of the elevator after it has moveddownward 1.00 {\rm m} from the point where it first contacts aspring?2. When the elevator is 1.00 {\rm m} below point where it first contacts a spring, whatis its acceleration?
Physics
2 answers:
Whitepunk [10]3 years ago
5 0

Answer:

A. V =3.65m/s

B. a = 4m/s^2

Explanation:

Determine force of gravity (f) on the elevator.

f = mg

(m = 2000kg, g = 9.8m/s

2000kg × 9.8m/s^2= 19600N

Given,

Force of opposing friction clampforce of gravity = 17000N

the Net force on the elevator

= force of gravity - Force of opposing friction clamp

=19600 - 17000

= 2600 N

Lets determine the kinetic energy of the elevator at the point of contact with the spring

K.E = 1/2 m v^2

(m = 2000kg, v = 4.00m/s)

= (1/2) × 2000kg × (4m/s)^2

= 16000J

kinetic energy and energy gain will be absorbed by the spring across the next 2m

Therefore,

E = K.E + P.E

K.E = 16000J,

P.E of spring = net force absorbed × distance at compression

net force absorbed = 2600N and distance at compression = 2.0m)

P.E = 5200J

E = 16000J + 5200J

E = 21200 J

Note, spring constant wasn't given

Lets determine it's value

Using,

E = (1/2) × k × (x)^2

Where:

E = energy = 21200J, K = ?, X = 2m

21200J=(1/2) × k × (2m)^2

21200J × 2 =(4m)k

K = 42400J/4m

K = 10600 N/m

Therefore,

acceleration at 1m compression = ?

Using F = K × X

(F is force provided by the spring = 10600N/m, K = 10600 N/m and X = 1m)

= 10600N/m × 1m = 10600 N ( upward)

A. The speed of the elevator after it has moved downward 1.00 {\rm m} from the point where it first contacts a spring?

Using.

original Kinetic energy + net force on the elevator = final kinetic energy + spring energy

16000N + 2600N = (1/2)mv^2 + (1/2)k x^2

18600 = (1/2)(2000)(v^2) + (1/2)(10600N)(1^2)

18600 = 1000(v^2) + 5300

18600 - 5300 = 1000(v^2)

13300 = 1000(v^2)

V^2 = 13.300

V =3.65m/s

The acceleration of the elevator is 1.00 {\rm m} below point where it first contacts a spring

Spring constant = net force on the elevator + resultant force

(Spring constant = 10600N, net force on the elevator = 2600N, resultant force = ?)

10600N = 2600N + resultant force

resultant force = 10600N - 2600N

=8000N

Therefore

F = ma

a = f/m

(a = ?, f =8000N and m =2000kg)

= 8000 / 2000

a = 4m/s^2

(It's accelerating upward, since acceleration is positive

8090 [49]3 years ago
4 0

Answer: final velocity Vf = 3.65m/s

a = -4m/s

Explanation:

Vf = final velocity

Vi = initial velocity = 4m/s

m = 2000kg

F = 17000N

We know that elevator is stopped when spring is compressed by;

x = 2m

Step 1

Therefore;

½ kx^2 + F(x) - mgx = ½mv^2

= ½k(2^2) + (17000 × 2) - ( 2000 × 9.81 × 2) = ½(2000) (4^2)

= 2k + 34000 - 39240 = 16000

k = 10620N/m.

Speed when spring is compressed by x= 1

Wg + Wf + Waiting = ½m( vf^2 - vi^2)

2000(9.81)(1) - 17000(1) - ½(10620)(1^2) = ½(2000)(vf^2 - 4^2)

-2.69 = vf^2 - 16

Vf = 3.65m/s.

Step 2.

Net force when elevator spring is compressed x = 1

Fnet = mg - kx - FF

Fnet = 2000(9.81) - (10620 × 1) - 17000

Fnet = -8000N

Acceleration

a = F/m

a = -8000/2000

a = - 4m/s^2

You might be interested in
Where should you place the values of the independent variable when constructing a data table?
kobusy [5.1K]
<span>On the y-axis (the bottom of the table) hope this helps</span>
4 0
3 years ago
Read 2 more answers
Our sun is unusual because it does not belong to a(n) ____
lesantik [10]
The answer is binary star system
5 0
4 years ago
Read 2 more answers
A V = 108-V source is connected in series with an R = 1.1-kΩ resistor and an L = 34-H inductor and the current is allowed to rea
soldi70 [24.7K]

Answer:

Explanation:

Given an RL circuit

A voltage source of.

V = 108V

A resistor of resistance

R = 1.1-kΩ = 1100 Ω

And inductor of inductance

L = 34 H

After he inductance has been fully charged, the switch is open and it connected to the resistor in their own circuit, so as to discharge the inductor

A. Time the inductor current will reduce to 12% of it's initial current

Let the initial charge current be Io

Then, final current is

I = 12% of Io

I = 0.12Io

I / Io = 0.12

The current in an inductor RL circuit is given as

I = Io ( 1—exp(-t/τ)

Where τ is time constant and it is given as

τ = L/R = 34/1100 = 0.03091A

So,

I = Io ( 1—exp(-t/τ))

I / Io = ( 1—exp(-t/τ))

Where I/Io = 0.12

0.12 = 1—exp(-t/τ)

0.12 — 1 = —exp(-t/τ)

-0.88 = -exp(-t/0.03091)

0.88 = exp(-t/0.03091)

Take In of both sides

In(0.88) = In(exp(-t/0.03091)

-0.12783 = -t/0.030901

t = -0.12783 × 0.030901

t = 3.95 × 10^-3 seconds

t = 3.95 ms

B. Energy stored in inductor is given as

U = ½Li²

So, the current at this time t = 3.95ms

I = Io ( 1—exp(-t/τ))

Where Io = V/R

Io = 108/1100 = 0.0982 A

Now,

I = Io ( 1—exp(-t/τ))

I = 0.0982(1 — exp(-3.95 × 10^-3 / 0.030901))

I = 0.0982(1—exp(-0.12783)

I = 0.0982 × 0.12

I = 0.01178

I = 11.78mA

Therefore,

U = ½Li²

U = ½ × 34 × 0.01178²

U = 2.36 × 10^-3 J

U = 2.36 mJ

8 0
3 years ago
If you were trying to kill a fish with a spear, would you aim where you see the fish
34kurt
No, you would aim slightly above, because when you throw the spear and it travels through the air it will fall slightly downwards by the time it reaches the fish.
6 0
4 years ago
A tablecloth can be pulled out from underneath a fully set table without breaking plates or glassware. The reason is that the ob
bekas [8.4K]

Answer:

newtons law of force

newtons law of force explains that something may or can or canot move depending on the objexts mass.

6 0
3 years ago
Other questions:
  • Explain 5 things that could cause an incorrect mass when using the triple bean balance?
    15·2 answers
  • How does exercise help you body devolpe
    7·1 answer
  • The amp is the unit for _________.
    14·2 answers
  • Does any body know anything about Criminal justice??
    6·2 answers
  • The potential energy of a 1.7 x 10-3 kg particle is described by U (x )space equals space minus (17 space J )space cos open squa
    7·1 answer
  • Three m^3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 295 K, 200 kPa. The air receives 154
    12·1 answer
  • Which of the following correctly compares UV rays and infrared waves?
    12·2 answers
  • Two substances, M and N, have specific heats c and 2c. if heats Q and 4Q are supɔlied to Mand N, respectively, their changes in
    11·1 answer
  • He back window of this car contains a heating element.The heating element is part of an electrical circuit connected to the batt
    13·1 answer
  • 4. How long will it take a car travelling with a speed of 160 km hr to cover a distance of 700 meters? Hint: km/hr should be con
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!