The oxidation number of elements in equation below are,
4NH₃ + 3Ca(ClO)₂ → 2N₂ + 6H₂O + 3CaCl₂
O.N of N in NH₃ = -3
O.N of Ca in Ca(ClO)₂ and CaCl₂ = +2
O.N of N in N₂ = 0
O.N of Cl in Ca(ClO)₂ = +1
O.N of Cl in CaCl₂ = -1
Oxidation:
Oxidation number of Nitrogen is increasing from -3 (NH₃) to 0 (N₂).
Reduction:
Oxidation number of Cl is decreasing from +1 [Ca(ClO)₂] to -1 (CaCl₂).
Result:
<span>N is oxidized and Cl is reduced.</span>
The wavelength is the distance between one crest/trough to another crest/trough. On the image, it's basically the length between each peak of the wave. You can see that the distance between peaks in wave A are much shorter than the distance between the peaks in wave B.
Thus, wave B has the longer wavelength.
Answer:
40.8g of sodium sulfate must be added
Explanation:
The reaction of barium nitrate, Ba(NO₃)₂ with sodium sulfate, Na₂SO₄ is:
Ba(NO₃)₂ + Na₂SO₄ → 2 NaNO₃ + BaSO₄(s)
That means, for a complete reaction of an amount of barium nitrate you must add the same amount in moles of sodium sulfate. To solve this problem we need to convert the mass of barium nitrate to moles = Moles of sodium sulfate that must be added:
<em>Moles Ba(NO₃)₂ -Molar mass: 261.3g/mol-:</em>
75g * (1mol / 261.3g) = 0.287 moles = Moles Na₂SO₄
<em>Mass Na₂SO₄ -Molar mass: 142.04g/mol-:</em>
0.287 moles * (142.04g / mol) =
<h3>40.8g of sodium sulfate must be added</h3>
Answer:
The balanced equation for methanol when is burned in the air, is
CH3OH + O2 -----> 3/2 CO2 +2 H2O and as you see coefficient of oxygen is 3/2
Explanation:
When you always burn something you are doing combustion. The reactives are your compound + O2, and as products you have CO2 and H2O
Decreasing the activation energy needed for the reaction.