Stored energy is described as potential energy
Answer:
0.162 moles of CO₂ are produced by this reaction
Explanation:
The reaction is:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) +4H₂O(g)
As we have the volume of propane, we need to know the mass that has reacted, so we apply density's concept.
Density = Mass / Volume → Density . Volume = Mass
0.00183 g/mL . 1300 mL = Mass → 2.379 g
We determine the moles → 2.379 g . 1mol / 44 g = 0.054 moles
Ratio is 1:3. 1 mol of propane can produce 3 moles of dioxide
Then, 0.054 moles may produce (0.054 .3)/1 = 0.162 moles
Due to the variables that each inquiry has, Scientific inquiry follows a path of questioning and testing a hypothesis, however this changes in response to specific details.
Answer:
b. Second order in NO and first order in O₂.
Explanation:
A. The mechanism
![\rm 2NO\xrightarrow[k_{-1}]{k_{1}}N_{2}O_{2} \, (fast)\\\rm N_{2}O_{2} + O_{2}\xrightarrow{k_{2}} 2NO_{2} \, (slow)](https://tex.z-dn.net/?f=%5Crm%202NO%5Cxrightarrow%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7DN_%7B2%7DO_%7B2%7D%20%5C%2C%20%28fast%29%5C%5C%5Crm%20N_%7B2%7DO_%7B2%7D%20%2B%20O_%7B2%7D%5Cxrightarrow%7Bk_%7B2%7D%7D%202NO_%7B2%7D%20%5C%2C%20%28slow%29)
B. The rate expressions
![-\dfrac{\text{d[NO]} }{\text{d}t} = k_{1}[\text{NO]}^{2} - k_{-1} [\text{N}_{2}\text{O}_{2}]^{2}\\\\\rm -\dfrac{\text{d[N$_{2}$O$_{2}$]}}{\text{d}t} = -\dfrac{\text{d[O$_{2}$]}}{\text{d}t} = k_{2}[ N_{2}O_{2}][O_{2}] - k_{1} [NO]^{2}\\\\\dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= k_{2}[ N_{2}O_{2}][O_{2}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BNO%5D%7D%20%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BNO%5D%7D%5E%7B2%7D%20-%20k_%7B-1%7D%20%5B%5Ctext%7BN%7D_%7B2%7D%5Ctext%7BO%7D_%7B2%7D%5D%5E%7B2%7D%5C%5C%5C%5C%5Crm%20-%5Cdfrac%7B%5Ctext%7Bd%5BN%24_%7B2%7D%24O%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D%20-%20k_%7B1%7D%20%5BNO%5D%5E%7B2%7D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20k_%7B2%7D%5B%20N_%7B2%7DO_%7B2%7D%5D%5BO_%7B2%7D%5D)
The last expression is the rate law for the slow step. However, it contains the intermediate N₂O₂, so it can't be the final answer.
C. Assume the first step is an equilibrium
If the first step is an equilibrium, the rates of the forward and reverse reactions are equal. The equilibrium is only slightly perturbed by the slow leaking away of N₂O₂ to form product.
![\rm k_{1}[NO]^{2} = k_{-1} [N_{2}O_{2}]\\\\\rm [N_{2}O_{2}] = \dfrac{k_{1}}{k_{-1}}[NO]^{2}](https://tex.z-dn.net/?f=%5Crm%20k_%7B1%7D%5BNO%5D%5E%7B2%7D%20%3D%20k_%7B-1%7D%20%5BN_%7B2%7DO_%7B2%7D%5D%5C%5C%5C%5C%5Crm%20%5BN_%7B2%7DO_%7B2%7D%5D%20%3D%20%5Cdfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D)
D. Substitute this concentration into the rate law
![\rm \dfrac{\text{d[NO$_{2}$]}}{\text{d}t}= \dfrac{k_{2}k_{1}}{k_{-1}}[NO]^{2} [O_{2}] = k[NO]^{2} [O_{2}]](https://tex.z-dn.net/?f=%5Crm%20%5Cdfrac%7B%5Ctext%7Bd%5BNO%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%3D%20%5Cdfrac%7Bk_%7B2%7Dk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D%20%3D%20k%5BNO%5D%5E%7B2%7D%20%5BO_%7B2%7D%5D)
The reaction is second order in NO and first order in O₂.