It’s either b-transference or d-translation.
But I believe it is translation (d)
Hope this helped :)
They use a internal pouch which is named swim bladder.
Explanation; Oxygen will enter a fish’s mouth, and passes through their gills. The oxygen will be taken and gets carried by hemoglobin through their bloodstream. Hemoglobin will take out some of the oxygen into their swim bladder. The amount of oxygen will show if they will sink or rise. Your question is how do they rise. If he goes up too much, the meaning of this is when the gas diffuses into their blood and out the gills.
Got this from a writing, but rephrased it.
Answer:
a. autotriploid of species A: 63 chromosomes
b. autotetraploid of species B: 96 chromosomes
c. allotriploid from species A and B: 1) 66 chromosomes and 2) 69 chromosomes
Explanation:
<u>For a.</u>
this species will have 3 haploid sets of chromosomes ('tri' means 3)
one haploid set = 21
21 × 3 = 63 chromosomes
<u>For b.</u>
this species will have 4 haploid sets of chromosomes ('tetra' means 4)
one haploid set = 24
24 × 4 = 96 chromosomes
<u>For c.</u>
there are two ways to do this:
1) two sets of chromosomes from species A and one from species B
42 + 24 = 66 chromosomes
2) one set of chromosomes from species A and two from species B
21 + 48 = 69 chromosomes
Hope that answers the question, have a great day!
Carrying capacity of an ecosystem is the defined as the largest population that it can sustain indefinitely with the available resources. Biologists also refer to carrying capacity as the “maximum load”. Carrying capacity has factors it depends on. These are the many abiotic and biotic factors in the ecosystem and some are more obvious than others. The most obvious being, the availability of the basic needs of organisms which make up the different ecosystems. Some of these are food, water and shelter in which dictate how many individuals the ecosystem can sustain.