Answer:
Given: Diameter of cone = 38 feet and height of cone = 14 feet.
Volume of cone V with radius r is one-third the area of the base B times the height h.
i,e
=
......[1]
,where B = ![\pi r^2](https://tex.z-dn.net/?f=%5Cpi%20r%5E2)
First find the radius(r);
Using Diameter(D) = 2r
38 =2r
Divide both side by 2 we get;
![\frac{38}{2} =\frac{2r}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B38%7D%7B2%7D%20%3D%5Cfrac%7B2r%7D%7B2%7D)
Simplify:
19 = r
or r =19 feet
Now, substitute the value of r = 19 feet and h = 14 feet in [1] [ Use value of
]
then, we have:
![V = \frac{1}{3} \pi r^2h = \frac{1}{3} \cdot \frac{22}{7} \cdot (19)^2 \cdot (14)](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20r%5E2h%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Ccdot%20%20%5Cfrac%7B22%7D%7B7%7D%20%5Ccdot%20%2819%29%5E2%20%5Ccdot%20%2814%29)
or
V = ![=\frac{1}{3}\cdot 22 \cdot 19 \cdot 19 \cdot 2 = \frac{22 \cdot 19 \cdot 19 \cdot 2}{3}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B3%7D%5Ccdot%2022%20%5Ccdot%2019%20%5Ccdot%2019%20%5Ccdot%20%202%20%3D%20%5Cfrac%7B22%20%5Ccdot%2019%20%5Ccdot%2019%20%5Ccdot%202%7D%7B3%7D)
or
V =
≈ 5,294.67 cubic feet.
therefore, the volume of pile is; ≈ 5,294.67 cubic feet.
The answer is D
Hdjdjdbdbdbdbd