1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
True [87]
3 years ago
15

Physical properties of a base include...

Physics
1 answer:
neonofarm [45]3 years ago
8 0

The correct answer is A

You might be interested in
A coil of conducting wire carries a current of i(t) = 14.0 sin(1.15 ✕ 103t), where i is in amperes and t is in seconds. A second
Advocard [28]

Answer:

The peak emf in second coil is 1.876 V

Explanation:

Given :

Inductance L = 130 \times 10^{-6} H

The current I(t) = 14 \sin(1.15\times 10^{3} t)

We compare above equation with standard equation,

  I(t) = I_{o} \sin (\omega t + \phi)

From above equation we have,

  \omega = 10^{3} and \phi = 1.15

Find the inductive resistance,

  X_{L} = \omega L

  X_{L} = 10^{3}  \times 130  \times 10^{-6}

  X_{L} = 0.134

The peak emf in second coil is,

   V = I_{o} X_{L}

  V = 14 \times 0.134

  V = 1.876 V

Therefore, the peak emf in second coil is 1.876 V

8 0
3 years ago
The redshift of a star means that _____.
Gelneren [198K]
The correct answer is D. the star is getting farther away.

When the light has red-shifted, it shows that everything is moving away from a certain point. This is known as the Doppler effect and proves the Big Bang (which would be the center point that everything is moving away from). Just as a 'for your information', blue shift is when the star is moving towards us.

Hope I helped :)
4 0
4 years ago
Read 2 more answers
Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
mariarad [96]

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

7 0
3 years ago
Can someone help me with this question?
soldier1979 [14.2K]

Explanation:

force = mass × acceleration

Solving for acceleration:

acceleration = force / mass

To find the acceleration, divide each force by the mass.  For example:

a = 480 N / 62 kg

a = 7.74 m/s²

8 0
3 years ago
A spring balance consists of a pan that hangs from a spring. A damping force Fd = −bv is applied to the balance so that when an
Citrus2011 [14]

Answer:

b ≈ 64 Kg/s

Explanation:

Given

Fd = −bv

m = 2.5 kg

y = 6.0 cm = 0.06 m

g = 9.81 m/s²

The object in the pan comes to rest in the minimum time without overshoot. this means that damping is critical (b² = 4*k*m).

m is given and we find k from the equilibrium extension of 6.0 cm (0.06 m):

∑Fy = 0 (↑)

k*y - W = 0    ⇒   k*y - m*g = 0   ⇒   k = m*g / y

⇒   k = (2.5 kg)*(9.81 m/s²) / (0.06 m)

⇒   k = 408.75 N/m

Hence, if

b² = 4*k*m    ⇒     b = √(4*k*m) = 2*√(k*m)

⇒     b = 2*√(k*m) = 2*√(408.75 N/m*2.5 kg)

⇒     b = 63.9335 Kg/s ≈ 64 Kg/s

5 0
4 years ago
Other questions:
  • 3. Ohm’s Law is represented by the equation I=V/R. Explain how the current would change if the amount of resistance decreased an
    15·1 answer
  • Which statement is TRUE about the factors affecting physical fitness?A.
    14·1 answer
  • During which segments are two states of matter present?
    14·1 answer
  • What an object is made of and the color of light that strikes it determine the
    5·1 answer
  • The age of the universe is around 100,000,000,000,000,000s. A top quark has a lifetime of roughly 0.000000000000000000000001s. W
    5·1 answer
  • A bus with a vertical wind shield moves horizontally
    15·1 answer
  • What is the maximum speed (in units of m/s) with which a car can round a
    10·1 answer
  • A solid cylinder (1 =1/2mr2 ) with a mass of 4.83 kg and a radius of 0.057 m starts
    13·1 answer
  • Convert 3.8 kg to Lbs
    9·2 answers
  • Please HELPPPPPP THIS IS TIMED
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!