The tilt of the moon's axis does not allow for monthly alignment, so the lunar and solar eclipse do not happen every month.
<h3>How do the lunar and solar eclipse occur?</h3>
- For the occurrence of lunar and solar eclipse, the sun, moon and the earth must remain in a plan and along a straight line.
- When the earth appears in between the sun and the moon, lunar eclipse occurs.
- When the moon appears in between the sun and the earth, solar eclipse occurs.
- The moon and earth are rotating not only around the sun, but also around the black hole of Milky way galaxy.
- So they are not present in a plan as well as in a straight line in every full moon and new moon time.
Thus, we can conclude that the option D is correct.
Learn more about the lunar eclipse and solar eclipse here:
brainly.com/question/8643
#SPJ1
Answer:
as its mass and velocity will less so its momentum will be less than that of baseball
Answer:
v = 14.32 m/s
Explanation:
According to the principle of conservation of linear momentum, both the momentum and kinetic energy of the system are conserved. Since the two balls are in the same direction of motion before collision, then;
+
= (
+
) v
0.035 × 12 + 0.120 × 15 = (0.035 + 0.120) v
0.420 + 1.800 = (0.155) v
2.22 = 0.155 v
⇒ v = 
= 14.323
The velocity of the balls after collision is 14.32 m/s.
Explanation:
m = kg. v=m/s. g=m/s^2. h= m
>>1/2mv^2=mgh
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m>>kg m^2/s^2=kg m^2/s^2 the fraction 1/2 won't be able to make any changes to to the dimensional expression of energy i.e half of energy is still energy therefore you can neglect the number .
<u>>>kg m^2/s^2=kg m^2/s^2</u><u> </u>
<u>></u><u>></u><u>J</u>= J
Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in above equation
So,

Hence, (a) (i) v = 55 m/s (ii) v = 211 m/s and (b) 78 m/s²