Answer:
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Explanation:
For this exercise let's use the relationship between momentum and momentum.
I = F t = Δp
in this case the final velocity is zero
F t = 0 -m v₀
F = m v₀ / t
in order to answer the question we must assume that the two vehicles have the same mass and speed
concrete barrier
F₁ = -p₀ / 0.1
F₁ = - 10 p₀
barrier collapses
F₂ = -p₀ / 1
let's look for the relationship of the forces
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
The movements of the tectonic plates
Answer:
4
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Mass of Earth
= Mass of Moon
r = Distance between Earth and Moon
Old gravitational force

New gravitational force

Dividing the equations

The ratio is 
The new force would be 4 times the old force
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
That's two different things it depends on:
-- surface area exposed to the air
AND
-- vapor already present in the surrounding air.
Here's what I have in mind for an experiment to show those two dependencies:
-- a closed box with a wall down the middle, separating it into two closed sections;
-- a little round hole in the east outer wall, another one in the west outer wall,
and another one in the wall between the sections;
So that if you wanted to, you could carefully stick a soda straw straight into one side,
through one section, through the wall, through the other section, and out the other wall.
-- a tiny fan that blows air through a tube into the hole in one outer wall.
<u>Experiment A:</u>
-- Pour 1 ounce of water into a narrow dish, with a small surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
-- Pour 1 ounce of water into a wide dish, with a large surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
<span><em>Show that the 1 ounce of water evaporated faster </em>
<em>when it had more surface area.</em></span>
============================================
============================================
<u>Experiment B:</u>
-- Again, pour 1 ounce of water into the wide dish with the large surface area.
-- Again, set the dish in the second half of the box ... the one the air passes
through just before it leaves the box.
-- This time, place another wide dish full of water in the <em>first section </em>of the box,
so that the air has to pass over it before it gets through the wall to the wide dish
in the second section. Now, the air that's evaporating water from the dish in the
second section already has vapor in it before it does the job.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
==========================================
<em>Show that it took longer to evaporate when the air </em>
<em>blowing over it was already loaded with vapor.</em>
==========================================