Answer:
2 electrons will be needed by unbound oxygen in order to fill its 2nd shell.
Explanation:
The chemical reaction between magnesium and oxygen gives magnesium oxide as a product.The reaction is chemically represented as:

Magnesium is a metal of group-2 with 2 valence electrons.It has atomic number of 12.
![[Mg]=1s^22s^22p^63s^2](https://tex.z-dn.net/?f=%5BMg%5D%3D1s%5E22s%5E22p%5E63s%5E2)
In order to attain noble gas configuration it will loose two electrons.
![[Mg]^{2+}=1s^22s^22p^6](https://tex.z-dn.net/?f=%5BMg%5D%5E%7B2%2B%7D%3D1s%5E22s%5E22p%5E6)
...[1]
Oxygen is a non metal of group-16 with 6 valence electrons..It has atomic number of 8.
![[O]=1s^22s^22p^4](https://tex.z-dn.net/?f=%5BO%5D%3D1s%5E22s%5E22p%5E4)
In order to attain noble gas configuration it will gain two electrons.
![[O]^{2-}=1s^22s^22p^6](https://tex.z-dn.net/?f=%5BO%5D%5E%7B2-%7D%3D1s%5E22s%5E22p%5E6)
..[2]
2 electrons will be needed by unbound oxygen in order to fill its 2nd shell.
Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
<u>Yes, work is done when a book falls of the table.</u>
This is because:
When the book falls, it's potential energy is converted into kinetic energy. As it reaches the floor down, this kinetic energy is converted to heat energy and sound energy due to the impact.
When a force is imposed on an object to cause displacement of that object, work is done on that object. For a force to do work on an object, there should be a displacement and this force should cause the displacement. So here, since the book falls from the table and causes the displacement of the book from the table to the floor. It is said that work is done.
Work can be given by the formula:
W = F • d
where F is the force and d is the displacement.
Answer:
Explanation:
The 2 equations we need here are, first:
and then once we solve for the acceleration here:
Δx
Solving for acceleration:
and now we will use that in the other equation:
Δx and
36 = 16 +
Δx and
20 =
Δx and
Δx so
Δx = 50 m