Answer:
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Step-by-step explanation:
Given that M is a polynomial of degree 3.
So, it has three zeros.
Let the polynomial be
M(x) =a(x-p)(x-q)(x-r)
The two zeros of the polynomial are -4 and 4i.
Since 4i is a complex number. Then the conjugate of 4i is also a zero of the polynomial i.e -4i.
Then,
M(x)= a{x-(-4)}(x-4i){x-(-4i)}
=a(x+4)(x-4i)(x+4i)
=a(x+4){x²-(4i)²} [ applying the formula (a+b)(a-b)=a²-b²]
=a(x+4)(x²-16i²)
=a(x+4)(x²+16) [∵i² = -1]
=a(x³+4x²+16x+64)
Again given that M(0)= 53.12 . Putting x=0 in the polynomial
53.12 =a(0+4.0+16.0+64)

=0.83
Therefore the required polynomial is
M(x)=0.83(x³+4x²+16x+64)
Answer:
quadrilateral
Step-by-step explanation:
Answer: -12.81% decrease
Step-by-step explanation:
1678-1463/1463 * 100 = -12.8128
Answer:
The second answer, and possibly the first answer as also true.
She did run a test that would indicate its an unbalanced dice, but this wasn't tried out with a different person throwing the dice.
Step-by-step explanation:
This is because from the computer generator results we see 11 of the 25 values are estimating at 1/5 when we know dice are 1/6 and more than 1/2 show just under 1/5 which balances this to be 1/6
But there are 9/25 tests that showed values under 10 throws found a 6 in 9/25 events = 1/3 approx out of 1/10 of the throws, and 1/3 is still a higher value than 1/6 of the multiple throws so indicates 100 throws would not be enough to tell as we cannot possibly assume her results are comparable with a computer generator.As the computer generator completed 25 x 100 throws and have just compared only x10 in relation to 1/10 of the events of the generated computer. This showing 9 of the 25 (100) throw events in relation scores 1/3 of the results a 6. The answer is she would need to throw somewhere between 1000 and 3000 to compare to the computers results.