Answer:
The bolts with diameter less than 5.57 millimeters and with diameter greater than 5.85 millimeters should be rejected.
Step-by-step explanation:
We have been given that the diameters of bolts produced in a machine shop are normally distributed with a mean of 5.71 millimeters and a standard deviation of 0.08 millimeters.
Let us find the sample score that corresponds to z-score of bottom 4%.
From normal distribution table we got z-score corresponding to bottom 4% is -1.75 and z-score corresponding to top 4% or data above 96% is 1.75.
Upon substituting these values in z-score formula we will get our sample scores (x) as:


Therefore, the bolts with diameters less than 5.57 millimeters should be rejected.
Now let us find sample score corresponding to z-score of 1.75 as upper limit.


Therefore, the bolts with diameters greater than 5.85 millimeters should be rejected.
Let ????C be the positively oriented square with vertices (0,0)(0,0), (2,0)(2,0), (2,2)(2,2), (0,2)(0,2). Use Green's Theorem to
bonufazy [111]
Answer:
-48
Step-by-step explanation:
Lets call L(x,y) = 10y²x, M(x,y) = 4x²y. Green's Theorem stays that the line integral over C can be calculed by computing the double integral over the inner square of Mx - Ly. In other words

Where Mx and Ly are the partial derivates of M and L with respect to the x variable and the y variable respectively. In other words, Mx is obtained from M by derivating over the variable x treating y as constant, and Ly is obtaining derivating L over y by treateing x as constant. Hence,
- M(x,y) = 4x²y
- Mx(x,y) = 8xy
- L(x,y) = 10y²x
- Ly(x,y) = 20xy
- Mx - Ly = -12xy
Therefore, the line integral can be computed as follows

Using the linearity of the integral and Barrow's Theorem we have

As a result, the value of the double integral is -48-
M = 57+46
(Since she has 46 less then martha, you know to find how many martha has you have to add 46!)
M=103
So martha has 103 coins!
The correct answers are:
- The ordered pair (7, 19) is a solution to the first equation because it makes the first equation true.
- The ordered pair (7, 19) is not a solution to the system because it makes at least one of the equations false.
Further explanation:
Given equations are:
2x-y = -5
x+3y = 22
We have to check whether the given statements are true or not. In order to find that we have to put the points in the equations
Putting the point in 2x-y = -5

Putting the point in x+3y=22

The point satisfies the first equation but doesn't satisfy the second. So,
1. The ordered pair (7, 19) is a solution to the first equation because it makes the first equation true.
This statement is true as the point satisfies the first equation
2. The ordered pair (7, 19) is a solution to the second equation because it makes the second equation true.
This Statement is false.
3. The ordered pair (7, 19) is not a solution to the system because it makes at least one of the equations false.
This statement is true.
4. The ordered pair (7, 19) is a solution to the system because it makes both equations true.
This statement is false as the ordered pair doesn't satisfy both equations.
Keywords: Solution of system of equations, linear equations
Learn more about solution of linear equations at:
#LearnwithBrainly
Trying to factor by splitting the middle term
Factoring <span> b2-4b+4</span>
The first term is, <span> <span>b2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -4b </span> its coefficient is <span> -4 </span>.
The last term, "the constant", is <span> +4 </span>
Step-1 : Multiply the coefficient of the first term by the constant <span> 1 • 4 = 4</span>
Step-2 : Find two factors of 4 whose sum equals the coefficient of the middle term, which is <span> -4 </span>.
<span><span> </span></span>
<span><span>-4 + -1 = -5</span><span> -2 + -2 = -4 That's it</span></span>
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, -2 and -2
<span>b2 - 2b</span> - 2b - 4
Step-4 : Add up the first 2 terms, pulling out like factors :
b • (b-2)
Add up the last 2 terms, pulling out common factors :
2 • (b-2)
Step-5 : Add up the four terms of step 4 :
(b-2) • (b-2)
Which is the desired factorization