1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
4 years ago
15

Find the quotient and remainder 255÷6

Mathematics
2 answers:
Olegator [25]4 years ago
7 0
..255 : 6 = 42
-24
====
...15
..-12
====
R 3

255:6=42 \ R. \ 3
or
255:6=42 \frac{3}{6}=42\frac{1}{2}

ludmilkaskok [199]4 years ago
3 0
42.5 or 42 with a remainder of 3
You might be interested in
Alicia wants to bake a cake with ⁹/10 grams of flour.However,she only has ⅓ grams of flour she needs.How much does she have?
natali 33 [55]

Answer:

We know that:

She needs 9/10 grams of flour for the cake (this quantity does not make a lot of sense, maybe is written incorrectly, but is the only info we have, so let's solve the problem with this)

She only has 1/3 of the amount she needs.

How much flour does she have?

Well, she needs 9/10 grams, and she has one-third of that.

Then she has (1/3) times (9/10) grams, this is:

F = (1/3)*(9/10) grams

F = (1*9)/(3*10) grams

F = 9/30 grams

That is the amount of flour that she has.

6 0
3 years ago
Solve the following quadratics. State the FACTORS AND SOLUTIONS. 1. 2x^2 - 7x + 3 2. 3x^2 + 7x +2
tekilochka [14]

Answer:

1. x = 3, 1/2 (solutions); (x - 3)(2x - 1) (factors)

2. x = -1/3, -2 (solutions); (3x + 1)(x + 2) (factors)

Step-by-step explanation:

<u>1. 2x^2 - 7x + 3</u>

To solve problem 1, you will need to identify your a, b, and c values in this quadratic function.

Since this problem is in standard form, it will be easy to identify these values. The standard form of a quadratic function is ax^2 + bx + c.

The a value is 2, the b value is -7, and the c value is 3 if we use our standard form and see which numbers are plugged into it.

Since we know that

  • a = 2
  • b = -7
  • c = 3

we can use the quadratic formula: x = \frac{-b~\pm~\sqrt{b^2~-~4ac} }{2a}

Substitute the a, b, and c values into the quadratic formula: x=\frac{-(-7)\pm\sqrt{(-7)^2-4(2)(3)} }{2(2)}

Now simplify using the laws of pemdas: x=\frac{7\pm\sqrt{(49)-(24)} }{4}

Simplify even further: x=\frac{7\pm\sqrt{(25)} }{4} \rightarrow x=\frac{7\pm (5) }{4}

Now split this equation into two equations to solve for x: x=\frac{12 }{4} ~~and~~ x=\frac{2 }{4}

12/4 can be simplified to 3, and 2/4 can be simplified to 1/2.

This means your solutions to problem 1 is 3, 1/2.

\boxed {x=3,\frac{1}{2} }

There is also another way to solve for the quadratic functions, and this was by factoring.

If you factor 2x^2 - 7x + 3 using the bottoms-up method, you will get (x - 3)(2x - 1).

After factoring, solving for the solutions is simple because all you have to do is set each factor to 0.

  • x - 3 = 0
  • 2x - 1 = 0

After solving for x by adding 3 to both sides, or by adding 1 to both sides then dividing by 2, you will end up with the same solutions: x = 3 and x = 1/2.

<u>2. 3x^2 + 7x + 2</u>

To save time I'll be using the bottoms-up factoring method, but remember to refer back to problem 1 (quadratic formula) if you prefer that method.

Factor this quadratic function using the bottoms-up method. After factoring you will have (3x + 1)(x + 2). These are your factors.

Now to solve for x and find the solutions of the quadratic function, you will set both factors equal to 0.

  • 3x + 1 = 0
  • x + 2 = 0

Solve.

<u>First factor:</u> 3x + 1 = 0

Subtract 1 from both sides.

3x = -1

Divide both sides by 3.

x = -1/3

<u>Second factor:</u> x + 2 = 0

Subtract 2 from both sides.

x = -2

Your solutions are x = -1/3 and x = -2.

\boxed {x = -\frac{1}{3} , -2}

7 0
3 years ago
You are paid $13.70/hr. You work 40 hr/wk and your deductions are FICA (7.65%), federal tax (l poin.
Novosadov [1.4K]
You need to save $2,858.59.
3 0
3 years ago
A function h(x) has zeroed at x=-6 and x=12 where does the function g(x) =h(3x) have zeroed?
saul85 [17]

Answer:.

Step-by-step explanation:.

7 0
3 years ago
Identify the zeros of the function f(x) =2x^2 − 2x + 13 using the Quadratic Formula. SHOW WORK PLEASE!! I NEED HELP!!
babunello [35]

Answer:

x=\frac{1+5i} {2}   and  x=\frac{1-5i} {2}

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

ax^{2} +bx+c=0

is equal to

x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}

in this problem we have

f(x)=2x^{2} -2x+13  

Equate the function to zero

2x^{2} -2x+13=0  

so

a=2\\b=-2\\c=13

substitute in the formula

x=\frac{-(-2)\pm\sqrt{-2^{2}-4(2)(13)}} {2(2)}

x=\frac{2\pm\sqrt{-100}} {4}

Remember that

i=\sqrt{-1}

so

x=\frac{2\pm10i} {4}

Simplify

x=\frac{1\pm5i} {2}

therefore

x=\frac{1+5i} {2}   and  x=\frac{1-5i} {2}

7 0
3 years ago
Other questions:
  • Caitlin Grasso is a salesperson in the kitchen and bath department at Morris Supplies, Inc. She makes 5.5% straight commission o
    13·2 answers
  • A local flower shop sells a dozen roses for $12.85.
    7·2 answers
  • Write a fact with the same sum as 7+5
    15·2 answers
  • Can some one please help
    14·2 answers
  • What words match the expression 3+(4x12)
    11·1 answer
  • Voice of the following choices can be used to solve problems what percentage of 75 is 10​
    15·1 answer
  • What is 64 divide 4+3=
    10·2 answers
  • If a jogger runs 2 miles and burns 185 calories, how many calories would he burn
    14·1 answer
  • What is this? I can't figure it out and forgot how to do it
    9·1 answer
  • Need help with this question p
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!