Ans:
12500 N/C
Explanation:
Side of square, a = 2.42 m
q = 4.25 x 10^-6 C
The formula for the electric field is given by

where, K be the constant = 9 x 10^9 Nm^2/c^2 and r be the distance between the two charges
According to the diagram
BD = 
where, a be the side of the square
So, Electric field at B due to charge at A


EA = 6531.32 N/C
Electric field at B due to charge at C


Ec = 6531.32 N/C
Electric field at B due to charge at D


ED = 3265.66 N/C
Now resolve the components along X axis and Y axis
Ex = EA + ED Cos 45 = 6531.32 + 3265.66 x 0.707 = 8840.5 N/C
Ey = Ec + ED Sin 45 = 6531.32 + 3265.66 x 0.707 = 8840.5 N/C
The resultant electric field at B is given by


E = 12500 N/C
Explanation:
Answer:
becouse most of nuclear elements are heave
Explanation:
Answer:
hey mate here is your answer
So if an object has a very small velocity (not moving very far over time, even though a large force may be applied to it, the Power will remain small. ... Stepping on the gas, or "speeding up" the car, is applying a force which will increase velocity and increase power.
please mark me as a brainliest
In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2