Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
. In single particle problem whole mass is concentrated at a single point so it has a single displacement, single velocity and single acceleration. while, in rigid body mass is distributed
Earth's gravity and the satellite's velocity keeps it so that it stays in orbit. (there is a more complicated side, too...)
Answer:
Part A: 16.1 V
Part B: 20.5 V
Part C: 21.5%
Explanation:
The voltmeter is in parallel with the 4.5-kΩ resistor and the combination is in series with the 6.5-kΩ resistor. The equivalent resistance of the parallel combination is given as


Part A
The voltmeter reading is the potential difference across the parallel combination. This is found by using the voltage-divider rule.

Part B
Without the voltmeter, the potential difference across the 4.5-kΩ resistor is found using the same rule as above:

Part C
The error in % is given by
