a + b ≥ 30, b ≥ a + 10, the system of inequalities could represent the values of a and b
option A
<u>Step-by-step explanation:</u>
Here we have , The sum of two positive integers, a and b, is at least 30. The difference of the two integers is at least 10. If b is the greater integer, We need to find which system of inequalities could represent the values of a and b . Let's find out:
Let two numbers be a and b where b>a . Now ,
- The sum of two positive integers, a and b, is at least 30
According to the given statement we have following inequality :
⇒ 
- The difference of the two integers is at least 10
According to the given statement we have following inequality :
⇒ 
⇒ 
⇒ 
Therefore , Correct option is A) a + b ≥ 30, b ≥ a + 10
11, 13, and 16. sorry if im wrong, and i hope this helps.
Answer: C
Explanation:i got it right on my test
Answer:
7/15
Step-by-step explanation:
Well 4/5 - 1/3 = 12 / 15 - 5 / 15 which is equal to 7/15, but there aren't any expressions in your question.
Answer:
Option B. minimum is correct for the first blank
Option C. 6 is correct for second blank.
Step-by-step explanation:
In order to find the maxima or minima of a function, we have to take the first derivative and then put it equal to zero to find the critical values.
Given function is:

Taking first derivative

Now the first derivative has to be put equal to zero to find the critical value

The function has only one critical value which is 5.
Taking 2nd derivative


As the value of 2nd derivative is positive for the critical value 5, this means that the function has a minimum value at x = 5
The value can be found out by putting x=5 in the function

Hence,
<u>The function y = x 2 - 10x + 31 has a minimum value of 6</u>
Hence,
Option B. minimum is correct for the first blank
Option C. 6 is correct for second blank.