To find out the answer we divide 0.09 by 10:

÷10=0.009.
Therefore, 0.09 is 10 times as much as 0.009.
The question is incomplete. The complete question is as follows:
Solve for X. Assume X is a 2x2 matrix and I denotes the 2x2 identity matrix. Do not use decimal numbers in your answer. If there are fractions, leave them unevaluated.
· X·
=<em>I</em>.
First, we have to identify the matrix <em>I. </em>As it was said, the matrix is the identiy matrix, which means
<em>I</em> =
So,
· X·
= ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Isolating the X, we have
X·
=
- ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Resolving:
X·
= ![\left[\begin{array}{ccc}2-1&8-0\\-6-0&-9-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2-1%268-0%5C%5C-6-0%26-9-1%5Cend%7Barray%7D%5Cright%5D)
X·
=![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, we have a problem similar to A.X=B. To solve it and because we don't divide matrices, we do X=A⁻¹·B. In this case,
X=
⁻¹·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, a matrix with index -1 is called Inverse Matrix and is calculated as: A . A⁻¹ = I.
So,
·
=![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
9a - 3b = 1
7a - 6b = 0
9c - 3d = 0
7c - 6d = 1
Resolving these equations, we have a=
; b=
; c=
and d=
. Substituting:
X=
·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Multiplying the matrices, we have
X=![\left[\begin{array}{ccc}\frac{8}{11} &\frac{26}{11} \\\frac{39}{11}&\frac{198}{11} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B8%7D%7B11%7D%20%26%5Cfrac%7B26%7D%7B11%7D%20%5C%5C%5Cfrac%7B39%7D%7B11%7D%26%5Cfrac%7B198%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
we have the function

Part a
For t=7
substitute in the given function

For t=14

For t=21

For t=28

For t=35

Observation: The values of E varies from -1 to 1, including the zero
Part B
Remember that
The Period goes from one peak to the next
so
Period=2pi/B
B=pi/14
Period=(2pi)/(pi/14)=2pi*14/pi=28
<h2>the period is 28 days</h2>
Answer:
a) 16%
b) 2.5%
Step-by-step explanation:
a)
The mean is 70 with standard deviation(SD) of 3 and you are asked to find out the percentage of staff that have <67(70-3 inch= mean - 1 SD) inch size, which means 1 SD below the mean (<-1 SD). Using 68-95-99.7 rule, you can know that 68% of the population is inside 1 SD range from the mean ( -1 SD to + 1 SD).
To put it on another perspective, there are 32% of the population that have < -1 SD and > +1 SD value. Assuming the distribution is symmetrical, then the value of < - 1 SD alone is 32%/2= 16%
b)
The question asks how many populations have size >76 inches, or mean + 2 SD (70+3*2 inch).
You can also solve this using 68-95-99.7 rule, but you take 95% value as the question asking for 2 SD instead. Since 95% of population is inside 2 SD range from the mean ( -2 SD to + 2 SD), so there are 5% of population that have < -2 SD and > +2 SD value. Assuming the distribution is symmetrical, then the value of > +2 SD alone is 5%/2= 2.5%
Answer:
7*8*4/2
Step-by-step explanation:
112