Using the normal distribution, it is found that 0.26% of the items will either weigh less than 87 grams or more than 93 grams.
In a <em>normal distribution</em> with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
In this problem:
- The mean is of 90 grams, hence
.
- The standard deviation is of 1 gram, hence
.
We want to find the probability of an item <u>differing more than 3 grams from the mean</u>, hence:



The probability is P(|Z| > 3), which is 2 multiplied by the p-value of Z = -3.
- Looking at the z-table, Z = -3 has a p-value of 0.0013.
2 x 0.0013 = 0.0026
0.0026 x 100% = 0.26%
0.26% of the items will either weigh less than 87 grams or more than 93 grams.
For more on the normal distribution, you can check brainly.com/question/24663213
Answer:
28+12x
Step-by-step explanation:
Multiply 7 with 4
Multiply 3x with 4
Answer:
When to lines intersect they create four angles. Each angle is opposite to another and form a pair of what are called opposite angles. Angles a and c are opposite angles. Angles b and d are opposite angles. Opposite angles are equal.
Answer:
Step-by-step explanation:
Given that you have eight cards. Five are green and three are yellow. The five green cards are numbered 1, 2, 3, 4, and 5. The three yellow cards are numbered 1, 2, and 3. The cards are well shuffled. You randomly draw one card.
G = card drawn is green
Y = card drawn is yellow
E = card drawn is even-numbered
List:
Sample space = {G1, G2, G3, G4, G5, Y1, Y2, Y3}
2) P(G) = 5/8
3) P(G/E) = P(GE)/P(E)
GE = {G2, G4}
Hence P(G/E) = 2/5
4) GE = {G2, G4}
P(GE) = 2/8 = 1/4
5) P(G or E) = P(G)+P(E)-P(GE)
= 5/8 + 3/8-2/8 = 3/5
6) No there is common element as G2 and G4
Cannot be mutually exclusive